Заболевания, эндокринологи. МРТ
Поиск по сайту

Кровоснабжение печени анатомия схема. Печеночные вены: расположение, функции, норма и отклонения. Основные артерии печени

Печёночная артерия является ветвью чревного ствола. Она проходит по верхнему краю поджелу­дочной железы к начальному отделу двенадцати­перстной кишки, затем направляется вверх между листками малого сальника, располагаясь спереди от воротной вены и медиальнее общего жёлчного протока, и в воротах печени делится на правую и левую ветви. Её ветвями также являются правая желудочная и гастродуоденальная артерии. Часто встречаются дополнительные ветви. Топографичес­кая анатомия тщательно изучена на печени доно­ров .При травме живота или ка­тетеризации печёночной артерии возможно её рас­слоение. Эмболизация печёночной артерии иног­да ведёт к развитию гангренозного холецистита .

Клинические проявления

Диагноз редко ставится при жизни больного; ра­бот с описанием клинической картины мало. Кли­нические проявления связаны с фоновым заболе­ванием, например с бактериальным эндокардитом, узелковым периартериитом, или определяются тя­жестью перенесённой операции на верхних отде­лах брюшной полости. Боль в эпигастральной об­ласти справа возникает внезапно и сопровождает­ся шоком и гипотензией. Отмечается болезненность при пальпации правого верхнего квадранта живо­та и края печени. Быстро нарастает желтуха. Обыч­но обнаруживаются лейкоцитоз, лихорадка, а при биохимическом исследовании крови -признаки цитолитического синдрома. Протромбиновое вре­мя резко возрастает, появляется кровоточивость. При окклюзии крупных ветвей артерии развивает­ся коматозное состояние и больной умирает в те­чение 10сут.

Необходимо проведение печёночной артериогра­фии. С её помощью можно обнаружить обструк­цию печёночной артерии. В портальных и субкап­сулярных областях развиваются внутрипеченочные коллатерали. Внепеченочные коллатерали с сосед­ними органами формируются в связочном аппа­рате печени [З].

Сканирование .Инфаркты обычно округлой или овальной, изредка клиновидной формы, рас­полагаются в центре органа. В раннем периоде они выявляются как гипоэхогенные очаги при ультра­звуковом исследовании (УЗИ) или нечётко отгра­ниченные области пониженной плотности на ком­пьютерных томограммах, не изменяющиеся при вве­дении контрастного вещества. Позднее инфаркты выглядят как сливные очаги с чёткими границами. Магнитно-резонансная томография (МРТ) позво­ляет выявить инфаркты как участки с низкой ин­тенсивностью сигнала на Т 1-взвешенных изобра­жениях и с высокой интенсивностью на Т2-взвешенных изображениях .При больших размерах инфаркта возможно образование «озёрец» жёлчи, иногда содержащих газ.

Лечение должно быть направлено на устранение причины повреждения. Для профилактики вторич­ной инфекции при гипоксии печени используют антибиотики. Основной целью является лечение острой печёночно-клеточной недостаточности. В случае травмы артерии применяют чрескожную эмболизацию .

Повреждение печёночной артерии при трансплантации печени

При повреждении жёлчных протоков вследствие ишемии говорят об ишемическом холангите .Он развивается у больных, перенёсших транспланта­цию печени при тромбозе или стенозе печёночной артерии или окклюзии околопротоковых артерий |8[. Диагностика затрудняется тем, что картина при исследовании биоптатов может свидетельствовать об обструкции жёлчных путей без признаков ишемии.

После трансплантации печени тромбоз печёноч­ной артерии обнаруживают с помощью артерио­графии. Допплеровское исследование не всегда позволяет выявить изменения, к тому же правиль­ная оценка его результатов затруднительна [б]. По­казана высокая достоверность спиральной КТ .

Аневризмы печёночной артерии

Аневризмы печёночной артерии встречаются ред­ко и составляют пятую часть всех аневризм висце­ральных сосудов. Они могут быть осложнением бак­териального эндокардита, узелкового периартери­ита или артериосклероза. Среди причин возрастает роль механических повреждений, например вслед­ствие дорожно-транспортных происшествий или врачебных вмешательств, таких как операции на жёлчных путях, биопсия печени и инвазивные рент­генологические исследования. Ложные аневризмы встречаются у больных с хроническим панкреати­том и образованием псевдокист .Гемобилия часто связана с ложными аневризмами . Анев­ризмы бывают врождёнными , внутри- и внепе­ченочными, размером от булавочной головки до грейпфрута. Аневризмы выявляют при ангиографии или случайно обнаруживают во время хирургичес­кой операции или при аутопсии.

Клинические проявления разнообразны. Только у трети больных отмечается классическая триада: жел­туха |24|, боли в животе и гемобилия. Частым симп­томом являются боли в животе; период от их появ­ления до разрыва аневризмы может достигать 5мес.

У 60-80%больных причиной первичного обра­щения к врачу бывает разрыв изменённого сосуда с истечением крови в брюшную полость, жёлчные пути или желудочно-кишечный тракт и развитием гемоперитонеума, гемобилии или кровавой рвоты.

УЗИ позволяет поставить предварительный диаг­ноз; его подтверждают с помощью печёночной арте­риографии и КТ с контрастированием (см. рис. 11-2) .Импульсное допплеровское УЗИ позволяет выявить турбулентность кровотока в аневризме .

Лечение. При внутрипеченочных аневризмах при­меняют эмболизацию сосуда под контролем ангио­графии (см. рис. 11-3и 11-4).У больных с анев­ризмами общей печёночной артерии необходимо хирургическое вмешательство. При этом артерию перевязывают выше и ниже места аневризмы.

Печёночные артериовенозные фистулы

Частыми причинами артериовенозных фистул яв­ляются тупая травма живота, биопсия печени или опухолей, как правило первичного рака печени. У больных с наследственной геморрагической телеан­гиэктазией (болезнь Рандю-Вебера-Ослера) обна­руживают множественные фистулы, которые могут привести к застойной сердечной недостаточности.

При больших размерах свища можно выслушать шум над правым верхним квадрантом живота. Пе­чёночная артериография позволяет подтвердить диагноз. В качестве лечебного мероприятия обыч­но используют эмболизацию желатиновой пеной.

Строение печени, размеры печени, сегменты печени. Сосудистая система печени. Артериальное кровоснабжение. Воротная вена. Желчевыводящая система. Ультраструктура печени.


Анатомия печени


Печень - один из наиболее крупных органов человеческого тела, играющий важную роль в пищеварении и обмене веществ. Трудно назвать другой орган со столь же большим разнообразием функций, каким обладает печень.

Относительные размеры и масса печени подвержены значительным колебаниям в зависимости от возраста. Масса печени взрослого человека 1300 - 1800 г. Печень новорожденных и детей первого месяца жизни занимает 1/2 или 1/3 брюшной полости, составляя в среднем 1/18 массы тела, а у взрослых она составляет лишь 1/36 массы тела. Однако уже у трехлетних детей печень имеет такие же соотношения с органами брюшной полости, как и у взрослых, хотя ее край больше выступает из-под реберной дуги в связи с короткой грудной клеткой ребенка.

Печень покрыта брюшиной со всех сторон, за исключением ворот и части задней поверхности. Паренхима органа покрыта тонкой прочной фиброзной оболочкой (глиссонова капсула), которая входит в паренхиму органа и разветвляется в ней.

Скелетотопия печени

Печень расположена непосредственно под диафрагмой в правом верхнем отделе брюшной полости, небольшая часть органа у взрослого человека заходит влево от средней линии. Орган имеет устойчивые ориентиры по отношению к скелету, которые используют при определении границ (рис. 1). Верхняя граница печени справа при максимальном выдохе располагается на уровне 4-го межреберного промежутка по правой сосковой линии, верхняя точка левой доли достигает 5-го межреберного промежутка по левой парастернальной линии. Верхний край печени имеет несколько косое направление, проходящее по линии от IV правого ребра до хряща V левого ребра. Передненижний край печени справа по подмышечной линии находится на уровне 10-го межреберного промежутка, его проекция совпадает с краем реберной дуги по правой сосковой линии. Здесь передний край отходит от реберной дуги и тянется косо влево и кверху, по средней линии он проецируется на середине расстояния между пупком и основанием мечевидного отростка. Далее передний край печени перекрещивает левую реберную дугу и на уровне VI реберного хряща по левой парастернальной линии переходит в верхний край.

Определение проекции переднего края печени очень важно при выполнении чрескожной пункционной биопсии печени. Передняя проекция печени имеет вид почти прямоугольного треугольника, большей частью прикрытого грудной стенкой, только в эпигастральной области нижний край печени выходит за пределы реберных дуг и прикрывается передней брюшной стенкой. Задняя проекция печени занимает сравнительно узкую полосу. Верхний край печени проецируется на уровне нижнего края IX грудного позвонка, а нижняя граница проходит по середине XI грудного позвонка.

Расположение печени изменяется в зависимости от положение тела. В вертикальном положении печень несколько опускается, а при горизонтальном поднимается. Смещение печени при дыхании используется во время ее пальпации: в большинстве случаев удается определить ее нижний край в фазе глубокого вдоха.

Рис. 1

Важно помнить о вариантах положения печени по отношению к сагиттальной плоскости тела; различают правостороннее и лево стороннее положение печени. При правостороннем положении печень лежит почти вертикально и имеет сильно развитую правую долю и уменьшенную левую. В некоторых случаях весь орган не переходит за среднюю линию, располагаясь в правой половине брюшной полости. При левостороннем положении орган лежит в горизонтальной плоскости, имеет хорошо развитую левую долю, иногда заходящую даже за селезенку. Эти варианты положения печени нужно учитывать при оценке результатов сканирования и эхолокации органа.

Сегментарное деление печени

По внешним признакам печень разделяется на неодинаковые по величине правую и левую доли. На верхней выпуклой поверхности границей между долями служит место прикрепления серповидной связки, на нижней поверхности границей являются левая и правая продольные борозды. Кроме того, выделяют квадратную и хвостовую доли, которые раньше принято было относить к правой доле. Квадратная доля заключена между передними отделами двух продольных борозд. Между задними отделами продольных борозд расположена хвостовая доля печени. В переднем отделе углубления на нижней поверхности правой до ли печени расположен желчный пузырь. В глубокой поперечной борозде на нижней поверхности правой доли находятся ворота печени. Через ворота в печень входят печеночная артерия и портальная вена с сопровождающими их нервами, выходят общий печеночный желчный проток, лимфатические сосуды.

В основу современного анатомо-функционального деления положено учение о сегментарном строении печени. Долей, сектором, сегментом принято называть участки печени различной величины, имеющие обособленное крово- и лимфообращение, иннервацию и отток желчи. В печени разветвляются воротная вена, печеночная артерия, желчные протоки и печеночные вены. Ход ветвей воротной вены, печеночной артерии и желчного протока внутри органа относительно совпадает. Эти сосуды и желчные протоки принято называть глиссоновой, или портальной, системой в отличие от печеночных вен, которые называются кавальной системой. Сегментарное деление печени проводится по портальной и кавальной системам. Деление печени по портальной системе чаще используется в хирургической практике, так как имеет больше анатомических обоснований.

Внутрипеченочная архитектоника воротной вены лежит в основе большинства схем сегментарного деления (рис. 2). Большое распространение получила классификация С. Couinaud (1957), согласно которой в печени различают 2 доли - правую и левую, 5 секторов и 8 наиболее постоянно встречающихся сегментов. Сегменты, группируясь по радиусам вокруг ворот печени, входят в более крупные самостоятельные участки органа, называемые секторами. Так, сегменты III и IV образуют левый парамедианный сектор. Левый латеральный сектор (моносегментарный включает только сегмент II, а в правый парамедианный сектор входят сегменты V и VIII, в правый латеральный сектор - сегменты VI и VII; сегмент I представляет собой дорсальный сектор (моносегментарный). Каждая доля, сектор или сегмент печени имеют в большинстве случаев доступную хирургической обработке так называемую глиссонову ножку, в которой, тесно прилегая друг к другу, располагаются ветви воротной вены, печеночной артерии и печеночного протока, одетые соединительнотканной оболочкой.

Кровеносные сосуды

Кровь поступает в печень из воротной вены и печеночной артерии; 2/3 объема крови поступает через воротную вену и только 1/3 - через печеночную артерию. Однако значение печеночной артерии для жизнедеятельности печени велико, так как артериальная кровь богата кислородом.

Артериальное кровоснабжение печени осуществляется из общей печеночной артерии (a. hepatica communis), являющейся ветвью truncus coeliacus. Ее длина 3 - 4 см, диаметр 0,5 - 0,8 см. Печеночная артерия непосредственно над привратником, не доходя 1-2 см до общего желчного протока, делится на a. gastroduodenalis и a. hepatica propria. Собственная печеночная артерия (а. hepatica propria) проходит вверх в печеночно-двенадцатиперстной связке, при этом она располагается влево и несколько глубже общего желчного протока и впереди от воротной вены. Длина ее колеблется от 0,5 до 3 см, диаметр от 0,3 до 0,6 см. Собственная печеночная артерия в своем начальном отделе отдает ветвь - правую желудочную артерию и прежде чем вступить в ворота печени или непосредственно в воротах делится на правую и левую ветви. В некоторых случаях от печеночной артерии отходит ветвь - квадратной доле печени. Обычно левая печеночная артерия кровоснабжает левую, квадратную и хвостовую доли печени.

Правая печеночная артерия снабжает в основном правую долю печени и дает артерию к желчному пузырю.

Артериальные анастомозы печени разделяются на две системы: внеорганную и внутриорганную. Внеорганную систему образуют в основном ветви, отходящие от a. hepatica communis, aa. gastroduodenalis и hepatica dextra. Внутриорганная система коллатералей образуется за счет анастомозов между ветвями собственной артерии печени.

Венозная система печени представлена приводящими и отводящими кровь венами. Основной приводящей веной является воротная. Отток крови из печени происходит по печеночным венам, впадающим в нижнюю полую вену.

Воротная вена (vena portae) формируется чаще всего из двух крупных стволов: селезеночной вены (v. lienalis) и верхней брыжеечной вены (v. mesenterica superior).

Рис. 2 . Схема сегментарного деления печени: А - диафрагмальная поверхность; Б - висцеральная поверхность; В - сегментарные ветви воротной вены (проекция на висцеральную поверхность). I - VIII - сегменты печени, 1 - правая доля; 2 - левая доля.

Самые крупные притоки - вены желудка (v. gastrica sinistra, v. gastrica dextra, v. prepylorica) и нижняя брыжеечная вена (v. mesenterica inferior) (рис. 3). Воротная вена чаще всего начинается на уровне II поясничного позвонка сзади головки поджелудочной железы. В ряде случаев она располагается частично или полностью в толще паренхимы железы, имеет длину от 6 до 8 см, диаметр до 1,2 см, в ней нет клапанов. На уровне ворот печени v. portae разделяется на правую ветвь, которая снабжает правую долю печени, и левую ветвь, снабжающую левую, хвостовую и квадратную доли.

Воротная вена связана многочисленными анастомозами с полыми венами (портокавальные анастомозы). Это анастомозы с венами пищевода и венами желудка, прямой кишки, околопупочными венами и венами передней брюшной стенки, а также анастомозы между корнями вен портальной системы (верхней и нижней брыжеечных, селезеночной и др.) и венами забрюшинного пространства (почечными, надпочечными, венами яичка или яичника и др.). Анастомозы играют важную роль в развитии коллатерального кровообращения при нарушениях оттока в системе воротной вены.

Особенно хорошо выражены портокавальные анастомозы в области прямой кишки, где связаны между собой v. rectalis superior, впадающая в v. mesenterica inferior, и vv. rectalis media et inferior, относящиеся к системе нижней полой вены. На передней брюшной стенке имеется выраженная связь между портальной и кавальной системами через vv. paraumbilicales. В области пищевода посредством связей v. gastrica sinistra и v.v. oesophagea создается анастомоз воротной вены с v. azygos, т. е. системой верхней полой вены (рис. 4).

Печеночные вены (v.v.hepaticae) являются отводящей сосудистой системой печени. В большинстве случаев имеется три вены; правая, средняя и левая, но их число может сильно увеличиваться, достигая 25. Печеночные вены впадают в нижнюю полую вену ниже того места, где она проходит через отверстие в сухожильной части диафрагмы в грудную полость.


Рис. 3 . Воротная вена и ее крупные ветви (по L. Schiff). Р - воротная вена; С - вена желудка; IM - нижняя брыжеечная вена; S - селезеночная вена; SM - верхняя брыжеечная вена.

В большинстве случаев нижняя полая вена проходит через задний отдел печени и окружена паренхимой со всех сторон.

Воротная гемодинамика характеризуется постепенным перепадом от высокого давления в брыжеечных артериях до самого низкого уровня в печеночных венах. Существенно, что кровь проходит две капиллярные системы: капилляры органов брюшной полости и синусоидальное русло печени. Обе капилляр ные сети соединены между собой воротной веной.

Кровь брыжеечных артерий под давлением 120 мм рт. ст. поступает в сеть капилляров кишечника, желудка, поджелудочной железы. Давление в капиллярах этой сети составляет 15 - 10 мм рт. ст. Из этой сети кровь поступает в венулы и вены, образующие воротную вену, где в норме давление не превышает 10 - 5 мм рт. ст. Из воротной вены кровь направляется в междольковые капилляры, оттуда попадает в систему печеночных вен и переходит в нижнюю полую вену. Давление в печеночных венах колеблется в пределах от 5 мм рт. ст. до нуля.

Таким образом, перепад давления в портальном русле составляет 120 мм рт. ст. Кровоток может увеличиваться или уменьшаться при изменениях градиента давления. Г. С. Магницкий (1976) подчеркивает, что портальный кровоток зависит не только от градиента давления, но и от гидромеханического сопротивления сосудов портального русла, величина которого определяется суммарным сопротивлением первой и второй капиллярных систем. Изменение сопротивления на уровне хотя бы одной капиллярной системы приводит к изменению суммарного сопротивления и увеличению или уменьшению портального кровотока. Важно подчеркнуть, что перепад давления в первой капиллярной сети составляет 110 мм рт. ст., а во второй - всего 10 мм рт. ст. Следовательно, основную роль в изменении портального кровотока играет капиллярная система органов брюшной полости, которая является мощным физиологическим краном. Значительные колебания гидромеханического сопротивления происходят в результате изменения просвета сосудов под влиянием нервной и гуморальной регуляции. Через портальное русло у человека кровь протекает со скоростью в среднем 1,5 л/мин, что соответствует 1/3 МОК.

Гистотопография печени

Печень представляет собой массу печеночных клеток, пронизанную кровеносными синусоидами. По современным представлениям гепатоциты образуют анастомозирующие пластинки из одного ряда клеток, тесно контактирующих с разветвленным кровеносным лабиринтом синусоидов (рис. 5). Основной морфофизиологической единицей печени с 1883 г. считают «классическую» гексагональную дольку, ее центром является печеночная вена - начальное звено венозной системы, собирающей кровь, оттекающую от печени. Паренхима долек образована радиально расположенными печеночными балками; это пластинчатые образования толщиной в одну клетку. Дольки отделены друг от друга прослойками соединительной ткани, называемыми портальными полями, связанными с фиброзной капсулой печени.

Рис. 4 . Портокавальные анастомозы.(по Б В Петровскому): 1 - портокавальные анастомозы в области прямой кишки 2- - анастомозы в области пищевода. 3 - анастомозы в области желудка, НПВ - нижняя полая вена. ВВ - воротная вена

Междольковая соединительная ткань нормальной печени развита слабо. В портальных полях проходят разветвления воротной вены, печеночной артерии, желчные и лимфатические канальцы. Проникая через терминальную пластинку гепатоцитов, отделяющую паренхиму долек от портального поля, портальная вена и печеночная артерия отдают свою кровь синусоидам. Синусоиды впадают в центральную вену дольки. Диаметр синусоидов колеблется от 4 до 25 мкм в зависимости от функционального состояния печени. В месте впадения венулы в синусоид и синусоида в печеночную вену расположены наружный и внутренний гладкомышечные сфинктеры, которые регулируют приток крови в дольку. Печеночные артерии, подобно соответствующим венам, распадаются на капилляры. Они входят в дольку печени и на ее периферии сливаются с капиллярами, берущими начало от портальных вен. Благодаря этому во внутридольковой капиллярной сети смешивается кровь, поступающая из воротной вены и печеночной артерии (рис. 6).


Рис. 5 . Реконструкция фрагмента печени по Н. Elias

Существует другая точка зрения, согласно которой за морфофизиологическую единицу принимается секреторная долька или аналогичная ей ацинарная единица. Паренхиму печени функционально разделяют на мелкие участки с портальным полем в центре, ограниченные центральными венами двух смежных печеночных долек, 3 - 4 таких фрагмента паренхимы образуют сложный ацинус или портальную дольку с сосудистым пучком портального тракта в центре и печеночными венами, лежащими в трех углах на периферии.

Внутридольковые синусоиды , представляющие собой микроциркуляторное русло кровеносной системы печени, непосредственно соприкасаются с каждым гепатоцитом. Максимальному обмену между кровеносным руслом и печеночной паренхимой способствует своеобразие строения стенок печеночных синусоидов. Стенка синусоидов печени не имеет свойственной капиллярам других органов базальной мембраны и построена из одного ряда эндотелиальных клеток. Между эндотелиальными клетками и поверхностью печеночных клеток имеется свободное перисинусоидное пространство - пространство Диссе. Установлено, что поверхность эндотелиальных клеток покрыта веществом мукополисахаридной природы, заполняющим также клеточные поры купферовских клеток, межклеточные щели и пространства Днссе. В этом веществе осуществляется интермедиарный обмен между кровью и печеночными клетками. Функционально активная поверхность печеночных клеток значительно увеличивается за счет многочисленных мельчайших выростов цитоплазмы - микроворсинок.


Рис. 6 . 1 - воротная вена; 2 - печеночная артерия; 3 - синусоиды; 4 - внутренний сфинктер; 5 - центральная вена; 6 - наружный сфинктер; 7 - артериола.

Эндотелиальные клетки в зависимости от функционального состояния разделяются на собственно эндотелиальные, выполняющие опорную функцию, активные эндотелиальные клетки (купферовские), обладающие фагоцитарной функцией, и фибропластические клетки, участвующие в образовании соединитель ной ткани. При гистохимическом исследовании в цитоплазме купферовских клеток выявляется повышенное содержание РНК, ШИК-положительньгк гранул, высокая активность кислой фосфатазы.

В соединительной ткани портальных полей наряду с портальной триадой, включающей ветви воротной вены, печеночной артерии и междольковые желчные протоки, содержатся единичные лимфоциты, гистиоциты, плазматические клетки и фибробласты. Соединительная ткань портальных трактов представлена коллагеновыми волокнами, хорошо выявляемыми при окраске пикрофуксином или трехцветным методом по Маллори.

Желчевыводящая система

Начальным звеном ее являются межклеточные желчные канальцы (капилляры), образованные билиарными полюсами двух и более смежных гепатоцитов (рис. 7). Желчные канальцы не имеют собственной стенки, ею служат цитоплазматические мембраны гепатоцитов. При гистологическом исследовании желчные канальцы не выявляются, но хорошо видны при реакции на щелочную фосфатазу. Межклеточные желчные канальцы, сливаясь друг с другом на периферии печеночной дольки, образуют более крупные перилобуляряые желчные ходы (терминальные дуктулы, холангиолы). Холангиолы образованы кубовидными эпителиальными клетками. При электронно-микроскопическом исследовании на поверхности эпителиальных клеток холангиол видны микроворсинки. Проходя через терминальную пластинку гепатоцитов, в перипортальной зоне холангиолы впадают в междольковые желчные протоки (дукты, холанги). Стенки этих протоков образованы соединительной тканью, в более крупных протоках имеется также слой гладкомышечных волокон.

Рис. 7 . Внутрипеченочные желчевыводящие пути (по Н. Popper, F. Schaffner). 1 - печеночная клетка; 2 - купферовская клетка; 3 - синусоид; 4 - межклеточный желчный каналец; 5 - перилобулярный желчный ход; б - междольковый желчный проток; 7 - вена; 8 - лимфатический сосуд.

Рис. 8 . Внепеченочные желчные ходы. 1 - желчный пузырь; 2- - ductus cysticus; 3 - ductus hepaticus; 4 - ductus choledochus; 5 - ductus pancreaticus; 6 - sphincter Oddi.

На нижней поверхности печени в области поперечной борозды левый и правый желчные протоки соединяются, образуя общий печеночный проток. Последний, сливаясь с пузырным протоком, впадает в общий желчный проток длиной 8 - 12 см. Общий желчный проток открывается в просвет двенадцатиперстной кишки в области большого дуоденального сосочка. Дистальный конец общего желчного протока расширен, в его стенке имеется слой гладкой мускулатуры - сфинктер (рис. 8),

Ультраструктура гепатоцита

При электронно-микроскопическом исследовании гепатоцит имеет неправильно-гексагональную форму с нечетко выраженными углами.

Различают синусоидальный полюс, обращенный к кровеносному синусоиду, и билиарный полюс, обращенный к желчному канальцу (рис. 9). Цитоплазматическая мембрана гепатоцита состоит из наружного и внутреннего слоев, между ними расположен осмиофобный слой шириной 2,5 - 3,0 нм. В мембране имеются поры, обеспечивающие сообщение эндоплазматического ретикулума с внеклеточной средой. Многочисленные выросты мембраны - микроворсинки - особенно отчетливо выражены на синусоидальном полюсе гепатоцита; они увеличивают функционально активную площадь гепатоцита. Ворсинками синусоидального полюса захватываются многочисленные метаболиты, а выделение секрета осуществляется на билиарном полюсе гепатоцита. Эти процессы регулируются с помощью ферментных систем, в частности щелочной фосфатазы и АТФ-азы. Гиалоплазма, основное вещество цитоплазмы гепатоцитов, слабо осмиофильна, с нечетко выраженными мелкими гранулами, пузырьками и фибриллами. Растворимые компоненты матрикса цитоплазмы включают значительное количество белка, небольшое количество РНК и липидов, ферменты гликолиза, переаминирования и др. В гиалоплазме содержатся цитоплазматические органеллы и включения. Ядро. Округлое и светлое, оно расположено в центральной части гепатоцита, имеет хорошо заметную ядерную оболочку, немногочисленные мелкие глыбки хроматина и от 1 до 4 округлых оксифильных ядрышка. В редких случаях гепатоциты содержат два ядра.

Ядерная оболочка в гепатоцитах тесно связана с эндоплазматической сетью: наблюдаются прямые переходы наружной мембраны ядерной оболочки в мембраны эндоплазматической сети и сообщение щелевидного пространства между мембра нами ядерной оболочки с канальцами зернистой эндоплазматической сети. В хроматине ядра локализованы ДНК и гистоны в виде дезоксирибонуклеопротеидного комплекса, кислые белки, рРНК, иРНК- В ядре гепатоцита обнаруживаются многочисленные ферменты, участвующие в синтезе РНК, ДНК и белка.

Эндоплазматический ретикулум гепатоцита представлен системой канальцев и цистерн, образованных параллельно расположенными мембранами. Эндоплазматический ретикулум состоит из двух частей: зернистой (гранулярной) и гладкой. В физиологических условиях зернистая часть гораздо более развита, чем гладкая; она расположена в основном вокруг ядра и митохондрий, на его наружной мембране находятся многочисленные осмиофильные гранулы диаметром 12 - 15 нм - рибосомы. Мембраны гладкого эндоплазматического ретикулума расположены вблизи билиарного полюса гепатоцита, в них происходит синтез глико- и липопротеидов, гликогена, холестерина. Обе части эндоплазматического ретикулума тесно взаимосвязаны, представляя собой систему непрерывных трубочек. Физиологическая роль эндоплазматического ретикулума состоит в обезвреживании лекарственных и токсических веществ, конъюгации билирубина, метаболизме стероидов, биосинтезе белков, выделяемых клеткой в тканевую жидкость, непосредственном участии в углеводном обмене.

Рис. 9 . Схема ультраструктуры гепатоцита (I), клетки Купфера (II), желчно-эпителиальной клетки (III) (по А. Ф. Блюгеру). 1 - ядро; 2 - ядрышко; 3 - ядерная мембрана; 4 - шероховатый эндоплазматический ретикулум;5 - гладкий эндоплазматический ретикулум; 6 - митохондрии;7 - комплекс Гольджи; 8 - лизосомы; 9 - полирибосомы; 10 - рибосомы; II - микроканалец;12 - десмосома; 13 - вакуоль;14 - пространство Диссе; 15 - желчный каналец; 16 - пероксисома; 17 - пиноцитозные пузырьки; 18 - синусоид", 19 - липиды; 20 - базальная мембрана:21 - микро ворсинки; 22 - гликоген; 23 - междольковый желчный проток; 24 - центриоль.

Аппарат Гольджи , или пластинчатый комплекс, состоит из двойных мембран, образующих уплощенные мешочки и мелкие пузырьки. Обычно он располагается в непосредственной близости к гладкому эндоплазматическому ретикулуму у билиарного полюса гепатоцита. Функциональное назначение аппарата Гольджи определяется его важной ролью в секреторных процессах. В зависимости от фазы секреции желчи происходит изменение компонентов аппарата Гольджи. Предполагается его участие в образовании лизосом и гликогена.

В цитоплазме гепатоцитов в тесном топографическом контакте с описанной выше системой канальцев находятся гранулярные образования: митохондрии, лизосомы, микротельца.

Митохондрии обладают весьма изменчивыми формой и расположением в клетке в зависимости от ее местоположения в дольке или особенностей функционального состояния. Обычно митохондрии округлые, овальные или вытянутые, окружены трехслойной мембраной. Внутренний слой мембран образует мембранные перегородки - кристы, на которых расположены гранулярные частицы. В гранулярных частицах осуществляется окислительное фосфорилирование. Матрикс митохондрий имеет мелкозернистое строение, содержит гранулы РНК, тонкие нити ДНК и единичные липидные включения. В митохондриях локализованы важнейшие ферментные системы, центральное место среди них занимают ферменты цикла Кребса, ферменты дезаминирования и трансаминирования.

Лизосомы имеют круглую или эллипсоидную форму, окру жены однослойной липопротеидной мембраной. Лизосомы обычно локализованы у билиарного полюса гепатоцита, в связи с чем их называют перибилиарными тельцами. В наибольшем количестве лизосомы содержатся в периферических зонах печеночной дольки. Лизосомы рассматривают как аппарат внутриклеточного пище варения и разделяют на первичные, еще не использовавшие свои литические ферменты, и вторичные, в которых уже произошел контакт между гидролазами и субстратом. Вторичные лизосомы подразделяют на пищеварительные вакуоли, осуществляющие лизис экзогенных веществ, поступивших в клетку путем пино- и фагоцитоза, аутофагийные вакуоли, осуществляющие лизис эндо генного материала, и остаточные тельца, или сегросомы, содержащие компактный материал, в котором расщепление субстрата закончено. Функцию лизосом можно определить как «внутриклеточное пищеварение», они участвуют в защитных реакциях, образовании желчи, обеспечивают внутриклеточный гомеостаз. Кроме органелл, в цитоплазме гепатоцитов содержатся различные включения: гликоген, липиды, пигменты, липофусцины.


Запись на консультацию.

Кровоснабжение печени осуществляется системой артерий и вен, которые соединены между собой и с сосудами других органов. Этот орган выполняет огромное количество функций, включая обезвреживание токсинов, синтез белков и желчи, а также накопление многих соединений. В условиях нормального кровообращения она выполняет свою работу, что положительно сказывается на состоянии всего организма.

Как происходят процессы кровообращения в печени?

Печень – это паренхиматозный орган, то есть не имеет полости. Ее структурной единицей является долька, которая образована специфическими клетками, или гепатоцитами. Долька имеет вид призмы, а соседние дольки объединяются в доли печени. Кровоснабжение каждой структурной единицы осуществляется с помощью печеночной триады, которая состоит из трех структур:

  • междольковой вены;
  • артерии;
  • желчного протока.

Особенности кровоснабжения печени заключаются в том, что она получает кровь не только из артерий, как остальные органы, но также из вен. Несмотря на то что по венам поступает большее количество крови (около 80%), артериальное кровоснабжение является не менее важным. По артериям поступает кровь, насыщенная кислородом и питательными веществами.

Основные артерии печени

Артериальная кровь поступает в печень из сосудов, которые берут начало из брюшной аорты. Главная артерия органа - печеночная. На своем протяжении она отдает кровь к желудку и желчному пузырю, а перед входом в ворота печени или непосредственно на этом участке делится на 2 ветви:

  • левую печеночную артерию, которая несет кровь в левую, квадратную и хвостовую доли органа;
  • правую печеночную артерию, которая снабжает кровью правую долю органа, а также отдает ответвление к желчному пузырю.

Артериальная система печени имеет коллатерали, то есть участки, где соседние сосуды объединяются посредством коллатералей. Это могут быть внепеченочные или внутриорганные объединения.

В кровообращении печени принимают участие крупные и мелкие вены и артерии

Вены печени

Вены печени принято разделять на приводящие и отводящие. По приводящим путям кровь движется к органу, по отводящим – отходит от него и уносит конечные продукты обмена веществ. С этим органом связано несколько основных сосудов:

  • воротная вена - приводящий сосуд, который формируется из селезеночной и верхней брыжеечной вен;
  • печеночные вены - система отводящих путей.

Воротная вена несет кровь из органов пищеварительного тракта (желудка, кишечника, селезенки и поджелудочной железы). Она насыщена токсичными продуктами обмена веществ, и их обезвреживание происходит именно в клетках печени. После этих процессов кровь отходит из органа по печеночным венам, а далее участвует в большом круге кровообращения.

Схема кровообращения в дольках печени

Топография печени представлена мелкими дольками, которые окружены сетью мелких сосудов. Они имеют особенности строения, благодаря которым кровь очищается от токсичных веществ. При попадании в ворота печени главные приносящие сосуды делятся на мелкие ответвления:

  • долевые,
  • сегментарные,
  • междольковые,
  • внутридольковые капилляры.

Эти сосуды имеют очень тонкий мышечный слой для облегчения фильтрации крови. В самом центре каждой дольки капилляры сливаются в центральную вену, которая лишена мышечной ткани. Она впадает в междольковые сосуды, а они, соответственно, – в сегментарные и долевые собирательные сосуды. Покидая орган, кровь расформирована по 3 или 4 печеночным венам. Эти структуры уже имеют полноценный мышечный слой и несут кровь в нижнюю полую вену, откуда она попадает в правое предсердие.

Анастомозы воротной вены

Схема кровоснабжения печени адаптирована для того, чтобы кровь из пищеварительного тракта очищалась от продуктов обмена веществ, ядов и токсинов. По этой причине застой венозной крови опасен для организма - если она будет собираться в просвете сосудов, токсические вещества будут отравлять человека.

Анастомозы – это обходные пути венозной крови. Воротная вена объединена с сосудами некоторых органов:

  • желудка;
  • передней брюшной стенки;
  • пищевода;
  • кишечника;
  • нижней полой веной.

Если по каким-либо причинам жидкость не может поступать в печень (при тромбозе или воспалительных заболеваниях гепатобилиарного тракта), она не скапливается в сосудах, а продолжает движение по обходным путям. Однако это состояние также является опасным, поскольку кровь не имеет возможности избавиться от токсинов и впадает в сердце в неочищенном виде. Анастомозы воротной вены начинают полноценно функционировать только в условиях патологии. Например, при циррозе печени одним из симптомов становится наполнение вен передней брюшной стенки около пупка.


Наиболее важные процессы происходят на уровне долек печени и гепатоцитов

Регуляция процессов кровообращения в печени

Движение жидкости по сосудам происходит за счет разности давления. В печени постоянно содержится не менее 1,5 л крови, которая движется по крупным и мелким артериям и венам. Суть регуляции кровообращения состоит в поддержании постоянного количества жидкости и обеспечении ее течения по сосудам.

Механизмы миогенной регуляции

Миогенная (мышечная) регуляция возможна, благодаря наличию клапанов в мышечной стенке кровеносных сосудов. При сокращении мускулов просвет сосудов сужается, и давление жидкости увеличивается. При их расслаблении происходит обратный эффект. Этот механизм играет основную роль в регуляции кровообращения и используется для поддержания постоянного давления в разных условиях: во время отдыха и физической активности, на жаре и холоде, при повышении и снижении атмосферного давления и в других ситуациях.

Гуморальная регуляция

Гуморальная регуляция – это воздействие гормонов на состояние стенок сосудов. Некоторые из биологических жидкостей могут влиять на вены и артерии, расширяя или сужая их просвет:

  • адреналин – связывается с адренорецепторами мышечной стенки внутрипеченочных сосудов, расслабляет их и провоцирует снижение уровня давления;
  • норадреналин, ангиотензин – воздействуют на вены и артерии, повышая давление жидкости в их просвете;
  • ацетилхолин, продукты метаболических процессов и тканевые гормоны – одновременно расширяет артерии и сужает вены;
  • некоторые другие гормоны (тироксин, инсулин, стероиды) – провоцируют ускорение кровообращения и одновременно замедление притока крови по артериям.

Гормональная регуляция лежит в основе реагирования на многие факторы внешней среды. Секреция этих веществ осуществляется эндокринными органами.

Нервная регуляция

Механизмы нервной регуляции возможны, благодаря особенностям иннервации печени, но они играют вторичную роль. Единственный способ воздействовать на состояние печеночных сосудов посредством нервов – это раздражение ветвей чревного нервного сплетения. В результате просвет сосудов сужается, количество приливаемой крови уменьшается.

Кровообращение в печени отличается от привычной схемы, которая характерна для других органов. Приток жидкости осуществляется венами и артериями, а отток – печеночными венами. В процессе циркуляции в печени жидкость очищается от токсинов и вредных метаболитов, после чего поступает в сердце и далее участвует в кровообращении.

Рис. 1. Топография печени; 1 - hepar; 2 - lig. falciforme hepatis; 3 - ventriculus; 4 - lien; 5 - colon transversum; 6 - lig. hepatogastricum.

Вес печени у человека достигает 1,5 кг, консистенция ее мягкая, цвет красновато-коричневый, форма напоминает крупную раковину. Выпуклая диафрагмальная поверхность печени (facies diaphragmatica) обращена вверх и кзади. Кпереди и особенно влево печень истончается (рис. 1 и 2). Нижняя висцеральная поверхность (facies visceralis) вогнута. Печень занимает правое подреберье и через надчревную область простирается в левое подреберье. Передний заостренный край печени обычно не выходит из-под правой реберной дуги до наружного края правой прямой мышцы живота. Далее нижняя граница печени переходит косо к месту соединения хрящей VII и VIII левых ребер. Печень занимает почти полностью купол диафрагмы. Слева она соприкасается с желудком, снизу - с правой почкой, с поперечной ободочной и двенадцатиперстной кишкой.


Рис. 2. Печень (сверху): 1 - lis. triangulare deist.; 2 - diaphragma; 3 - lig. coronarium hepatis; 4 - lig. triangulare sin.; 5 - appendix fibrosa hepatis; 6 - lobus sin. hepatis; 7 - lig. falciforme hepatis; 8 - lig. teres hepatis; 9 - incisura lig. teretis; 10 - margo inf.; 11 - vesica fellea (fundus); 12 - lobus dext. hepatis.
Рис. 3. Печень (сзади): 1 - lig. triangulare sin.; 2 - impressio gastrica; 3 - lig. coronarium hepatis; 4 - impressio oesophagea; 5 - lig. venosum hepatis; 6 - lobus caudatus hepatis; 7 - lig. falciforme hepatis; 8 - v. hepatica; 9 - lobus dext. hepatis; 10 - v. cava inf.; 11 - lig. v. cavae; 12 - facies diaphragmatica; 13 - impressio suprarenalis; 14 - processus caudatus; 13 - collum vesicae felleae; 16 - lig. triangulare dext.; 17 - impressio renalis; 18 - impressio colica; 19 - impressio duodenalis; 20 - vesica fellea; 21 - ductus choledochus; 22 - v. portae; 23 - lobus quadratus; 24 - lig. falciforme hepatis; 26 - a. hepatica propria; 26 - lig. teres hepatis; 27 - porta hepatis; 28 - tuber omentale; 29 - lobus sin.; 30 - appendix fibrosa hepatis.

Печень, за исключением верхне-задней поверхности, прирастающей к диафрагме, покрыта брюшиной. Переход брюшины с диафрагмы на печень по фронтальной плоскости обозначается как венечная связка (lig. coronarium hepatis), переход по сагиттальной плоскости - как серповидная связка (lig. falciforme hepatis), разделяющая диафрагмальную поверхность печени на правую и левую доли (lobus hepatis dexter et sinister). Висцеральная поверхность двумя продольными бороздами и одной поперечной (ворота печени) делится на правую, левую, хвостатую (lobus caudatus) и квадратную (lobus quadratus) доли. В углублении правой продольной борозды спереди помещается желчный пузырь (см.), сзади - нижняя полая вена. В левую продольную борозду входит круглая связка печени (lig. teres hepatis), образовавшаяся из запустевшей пупочной вены. Здесь же она переходит в венозную связку (lig. venosum)- остаток заросшего венозного протока. Под брюшиной поверх печени находится соединительнотканная капсула.

Входящие в ворота печени воротная вена (см.) и печеночная артерия и выходящие из ворот лимфатические сосуды и желчный проток (рис. 3) покрыты листками брюшины, составляющими печеночно-двенадцатиперстную связку (lig. hepatoduodenal). Продолжением ее служит печеночно-желудочная связка (lig. hepatogastricum) - малый сальник. Вниз к правой почке от печени тянется листок брюшины - печеночно-почечная связка (lig. hepatorenale). Между печенью и диафрагмой по бокам от серповидной связки выделяются правая и левая печеночные сумки (bursa hepatica dext. et sin.), между печенью и желудком позади малого сальника располагается сальниковая сумка (bursa omentalis). Сегменты печени показаны на рис.


Основные сегменты печени: I - передний сегмент: II - задний сегмент; III - медиальный сегмент; IV- латеральный сегмент. 1 - ductus cholcdoclius; 2 - v. portae; 3 - a. hepatica.


Рис. 4. Схема строения лимфатических сосудов печени: 1 - загрудинные лимфатические узлы; 2 - передняя группа диафрагмальных узлов; 3 - задняя группа диафрагмальных узлов; 4 - нижняя полая вена; 5 - нижняя диафрагмальная артерия; б - грудная аорта; 7 - чревные лимфатические узлы; 8 - печеночные вены; 9 - печеночные лимфатические узлы; 10 - глубокие лимфатические сосуды; 11 - поверхностные лимфатические сосуды; 12 - диафрагма.

Кровеносное русло печени складывается из внутриорганной части венозной воротной системы, дренажной системы печеночных вен и системы печеночных артерий. Артериальное кровоснабжение печени осуществляется за счет печеночной артерии (из системы чревной артерии), которая, войдя в ворота печени, делится на правую и левую ветви. Нередко встречаются добавочные печеночные артерии, идущие из ветвей чревной артерии и из верхней брыжеечной артерии. Воротная вена приносит в печень основную массу крови. Она делится на долевые вены, из которых берут начало сегментарные. Продолжая делиться, ветви воротной вены сначала становятся междольковыми, а затем тонкими септальными венулами, переходящими в капилляры - синусоиды дольки. Сюда же открываются септальные артериолы, завершающие ветвление сегментарных внутрипеченочных артерий. Таким образом, по синусоидам течет смешанная кровь. Синусоиды снабжены приспособлениями для регуляции кровотока. В результате слияния синусоидов образуются центральные вены долек, из которых кровь оттекает сначала в поддольковые, а потом в собирательные вены и, наконец, в 3-4 печеночные вены. Последние открываются в нижнюю полую вену. Лимфатическая система печени (рис. 4) начинается вокругдольковыми и поверхностными сетями капилляров, складывающимися в поверхностные и глубокие лимфатические сосуды, по которым лимфа оттекает либо к лимфатическим узлам в воротах печени., либо к поддиафрагмальным узлам вокруг нижней полой вены. В иннервации печени принимают участие блуждающие нервы и ветви солнечного сплетения, благодаря которым обеспечивается вегетативная и афферентная иннервация.

См. также Портальное кровообращение.

Оглавление темы "Топографическая анатомия печени.":

Воротная вена , v. portae, также приносит кровь в печень. Она собирает кровь от всех непарных органов брюшной полости. Воротная вена образуется из слияния верхней брыжеечной, v. mesenterica superior, и селезеночной, v. splenica (lienalis), вен. Место их слияния, то есть место формирования v. portae. находится позади головки поджелудочной железы.

В воротную вену впадают v. pancreaticoduodenalis superior, v. prepylorica и правая и левая желудочные вены, vv. gastricae dextra et sinistra. Последняя нередко впадает в селезеночную вену. Нижняя брыжеечная вена, v. mesenterica inferior, как правило, впадает в селезеночную, реже - в верхнюю брыжеечную вену.

Из-под головки поджелудочной железы воротная вена идет кверху позади двенадцатиперстной кишки и входит в промежуток между листками печеночно-дуоденальной связки. Там она располагается позади печеночной артерии и общего желчного протока. Длина воротной вены колеблется от 2 до 8 см.

На расстоянии 1,0-1,5 см от ворот печени или в воротах она разделяется на правую и левую ветви, r. dexter et r. sinister.

Опухоли поджелудочной железы, особенно ее головки, могут сдавливать лежащую кзади от головки воротную вену , в результате чего возникает портальная гипертензия, то есть повышение венозного давления в системе воротной вены.

Отток по воротной вене нарушается и при циррозах печени. Компенсаторным механизмом при нарушенном оттоке становится коллатеральный кровоток по анастомозам с ветвями полых вен (портокавальные анастомозы ).

Портокавальными анастомозами являются:
1) анастомозы между венами желудка (система v. portae) и венами пищевода (система v. cava superior);
2) анастомозы между верхней (v. portae) и средней (v. cava inferior) венами прямой кишки;
3) между околопупочными венами (v. portae) и венами передней брюшной стенки (v. cava superior и inferior);
4) анастомозы верхней и нижней брыжеечных, селезеночной вен (v. portae) с венами забрюшинного пространства (почечные, надпочечные, вены яичка или яичника и другие, впадающие в v. cava inferior).

Печеночные вены

Печеночные вены , vv. hepaticae, отводят кровь из печени. В большинстве случаев имеются три постоянно встречающихся венозных ствола: правая, промежуточная и левая печеночные вены. Они впадают в нижнюю полую вену тотчас ниже foramen v. cavae в сухожильной части диафрагмы. На pars nuda задней поверхности печени образуется борозда нижней полой вены, sulcus venae cavae.