Заболевания, эндокринологи. МРТ
Поиск по сайту

Являются ли математические способности врождёнными? Что такое математические способности и как их развить

Особенности развития математических и спортивных способностей школьников

2.1 Психологическая структура математических способностей

способность школьник математический спортивный

Математика - это инструмент познания, мышления, развития. Он богат возможностями творческого обогащения. Ни один школьный предмет не может конкурировать с возможностями математики в воспитании мыслящей личности. Особое значение математики в умственном развитии отметил еще в ХVIII веке М.В. Ломоносов: "Математику уже затем учить следует, что она ум в порядок приводит".

Существует общепризнанная классификация способностей. Согласно ей способности делятся на общие и специальные, определяющие успехи человека в отдельных видах деятельности и общения, где необходимы особого рода задатки и их развитие (способности математические, технические, литературно-лингвистические, художественно-творческие, спортивные и т.д.).

Математические способности обуславливаются не только хорошей памятью и вниманием. Для математика важно умение уловить порядок элементов, и умение оперировать этими данными. Эта своеобразная интуиция и есть основа математической способности.

В исследование математических способностей внесли свой вклад такие ученые в психологии, как А. Бинэ, Э. Торндайк и Г. Ревеш, и такие выдающиеся математики, как А. Пуанкаре и Ж. Адамар. Большое разнообразие направлений определяет и большое разнообразие в подходах к исследованию математических способностей. Разумеется, исследование математических способностей следует начинать с определения. Попытки такого рода делались неоднократно, но установившегося, удовлетворяющего всех определения математических способностей не имеется до сих пор. Единственное, в чём сходятся все исследователи, это, пожалуй, мнение о том, что следует различать обычные, "школьные" способности к усвоению математических знаний, к их репродуцированию и самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта.

Ещё в 1918 году в работе А. Роджерс отмечались две стороны математических способностей, репродуктивная (связанная с функцией памяти) и продуктивная (связанная с функцией мышления). В. Бетц определяет математические способности как способности ясного осознания внутренней связи математических отношений и способность точно мыслить математическими понятиями.

Из работ отечественных авторов необходимо упомянуть оригинальную статью Д. Мордухай-Болтовского "Психология математического мышления", опубликованную в 1918 году. Автор, специалист математик, писал с идеалистической позиции, придавая, например, особое значение "бессознательному мыслительному процессу", утверждая, что "мышление математика глубоко внедряется в бессознательную сферу, то, всплывая на её поверхность, то погружаясь в глубину. Математик не осознает каждого шага своей мысли, как виртуоз движения смычка" [цит. по 13, с. 45]. Внезапное появление в сознание готового решения какой-либо задачи, которую мы не можем долго решить, - пишет автор, - мы объясняем бессознательным мышлением, которое продолжало заниматься задачей, а результат всплывает за порог сознания [цит. по 13, с. 48]. По мнению Мордухай-Болтовского наш ум способен производить кропотливую и сложную работу в подсознании, где и совершается вся "черновая" работа, причём бессознательная работа мысли даже отличается меньшей погрешностью, чем сознательная.

Автор отмечает совершенно специфический характер математического таланта и математического мышления. Он утверждает, что способность к математике не всегда присуще даже гениальным людям, что между математическим и нематематическим умом есть существенная разница. Большой интерес представляет попытка Мордухай-Болтовского выделить компоненты математических способностей. К таким компонентам он относит в частности:

* "сильную память", память на "предметы того типа, с которыми имеет дело математика", память скорее не на факты, а на идеи и мысли.

* "остроумие", под которым понимается способность "обнимать в одном суждении" понятия из двух малосвязанных областей мысли, находить в уже известном сходное с данным, отыскивать сходное в самых отдалённых казалось бы, совершенно разнородных предметах.

* быстроту мысли (быстрота мысли объясняется той работой, которую совершает бессознательное мышление в помощь сознательному). Бессознательное мышление, по мнению автора, протекает гораздо быстрее, чем сознательное.

Д. Мордухай-Болтовский высказывает так же свои соображения по поводу типов математического воображения, которые лежат в основе разных типов математиков - "геометров" и "алгебраистов". Арифметики, алгебраисты и вообще аналитики, у которых открытие производится в самой абстрактной форме прорывных количественных символов и их взаимоотношений, не могут воображать так, как "геометр".

Д.Н. Богоявленский и Н.А. Менчинская, говоря об индивидуальных различиях в обучаемости детей, вводит понятие психологических свойств, определяющих при прочих равных условиях успех в учении. Они не употребляют термина "способности", но по существу соответствующее понятие близко к тому определению, которое дано выше.

Математические способности - сложное структурное психическое образование, своеобразный синтез свойств, интегральное качество ума, охватывающее разнообразные его стороны и развивающееся в процессе математической деятельности. Указанная совокупность представляет собой единое качественно-своеобразное целое, - только в целях анализа мы выделяем отдельные компоненты, отнюдь не рассматривая их как изолированные свойства. Эти компоненты тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, проявления которой мы условно называем "синдром математической одаренности".

Говоря о структуре математических способностей, следует отметить вклад в разработку данной проблемы В.А. Крутецкого. Собранный им экспериментальный материал позволяет говорить о компонентах, занимающих существенное место в структуре такого интегрального качества ума, как математическая одарённость.

Общая схема структуры математических способностей в школьном возрасте

1. Получение математической информации

А) Способность к формализованному восприятию математического материала, охватыванию формальной структуры задачи.

2. Переработка математической информации.

А) Способность к логическому мышлению в сфере количественных и пространственных отношений, числовой и знаковой символики. Способность мыслить математическими символами.

Б) Способность к быстрому и широкому обобщению математических объектов, отношений и действий.

В) Способность к свёртыванию процесса математического рассуждения и системы соответствующих действий. Способность мыслить свернутыми структурами.

Г) Гибкость мыслительных процессов в математической деятельности.

Д) Стремление к ясности, простоте, экономности и рациональности решений.

Е) Способность к быстрой и свободной перестройке направленности мыслительного процесса, переключение с прямого на обратный ход мысли (обратимость мыслительного процесса при математическом рассуждении).

3. Хранение математической информации.

А) Математическая память (обобщенная память на математические отношения, типовые характеристики, схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним)

4. Общий синтетический компонент.

А) Математическая направленность ума.

Не входят в структуру математической одарённости те компоненты, наличие которых в этой структуре не обязательно (хотя и полезно). В этом смысле они являются нейтральными по отношению к математической одаренности. Однако их наличие или отсутствие в структуре (точнее степень развития) определяют типы математического склада ума.

1. Быстрота мыслительных процессов как временная характеристика.

Индивидуальный темп работы не имеет решающего значения. Математик может размышлять неторопливо, даже медленно, но очень обстоятельно и глубоко.

2. Вычислительные способности (способности к быстрым и точным вычислениям, часто в уме). Известно, что есть люди, способные производить в уме сложные математические вычисления (почти мгновенное возведение в квадрат и куб трёхзначных чисел), но не умеющие решать сколько-нибудь сложные задачи.

Известно также, что существовали и существуют феноменальные "счётчики" не давшие математике ничего, а выдающийся математик А. Пуанкаре писал о себе, что без ошибки не может сделать даже сложение.

3. Память на цифры, формулы, числа. Как указывал академик А.Н. Колмогоров, многие выдающиеся математики не обладали сколько-нибудь выдающейся памятью такого рода.

4. Способность к пространственным представлениям.

5. Способность наглядно представлять абстрактные математические отношения и зависимости.

Следует подчеркнуть, что схема структуры математических способностей имеет в виду математические способности школьника. Нельзя сказать в какой мере её можно считать общей схемой структуры математических способностей, в какой мере её можно отнести к вполне сложившимся одарённым математикам.

Типы математических складов ума.

Хорошо известно, что в любой области науки одарённость как качественное сочетание способностей всегда многообразна и в каждом отдельном случае своеобразна. Но при качественном многообразии одарённости всегда можно наметить какие-то основные типологические различия в структуре одарённости, выделить определённые типы, значительно отличающиеся один от другого, разными путями приходящие к одинаково высоким достижениям в соответствующей области.

Об аналитическом и геометрическом типах упоминается работах А. Пуанкаре, Ж. Адамара, Д. Мордухай-Болтовского, но с этими терминами у них связывается скорее логический, интуитивный пути творчества в математике.

Из отечественных исследователей вопросами индивидуальных различий учащихся при решении задач с точки зрения соотношения абстрактных и образных компонентов мышления много занималась Н.А. Менчинская. Она выделяла учащихся с относительным преобладанием: а) образного мышления над абстрактным; б) абстрактного над образным и в) гармоническим развитием обоих видов мышления.

Нельзя думать, что аналитический тип проявляется только в алгебре, а геометрический - в геометрии. Аналитический склад может проявляться в геометрии, а геометрический - в алгебре. В.А. Крутецкий дал развернутую характеристику каждого типа.

Аналитический тип.

Мышление представителей этого типа характеризуется явным преобладанием очень хорошо развитого словесно-логического компонента над слабым наглядно-образным. Они легко оперируют отвлечёнными схемами. У них нет потребности в наглядных опорах, в использование предметной или схематической наглядности при решении задач, даже таких, когда данные в задаче математические отношения и зависимости "наталкивают" на наглядные представления.

Представители этого типа не отличаются способностью наглядно-образного представления и в силу этого используют более трудный и сложный логико-аналитический путь решения там, где опора на образ дает гораздо более простое решение. Они очень успешно решают задачи, выраженные в абстрактной форме, задачи же, выраженные в конкретно-наглядной форме, стараются по возможности переводить в абстрактный план. Операции, связанные с анализом понятий, осуществляются ими легче, чем операции, связанные с анализом геометрической схемы или чертежа.

Геометрический тип

Мышление представителей этого типа характеризуется очень хорошо развитым наглядно-образным компонентом. В связи с этим условно можно говорить о преобладании над хорошо развитым словесно-логическим компонентом. Эти учащиеся испытывают потребность в наглядной интерпретации выражения абстрактного материала и демонстрируют большую избирательность в этом отношении. Но если им не удается создать наглядные опоры, использовать предметную или схематическую наглядность при решении задач, то они с трудом оперируют отвлечёнными схемами. Они упорно пытаются оперировать наглядными схемами, образами, представлениями даже там, где задача легко решается рассуждением, а использование наглядных опор излишне или затруднительно.

Гармонический тип.

Для этого типа характерно относительное равновесие хорошо развитых словесно-логического и наглядно-образного компонентов при ведущей роли первого. Пространственные представления у представителей этого типа развиты хорошо. Они избирательны в наглядной интерпретации абстрактных отношений и зависимостей, но наглядные образы и схемы подчинены у них словесно-логическому анализу. Оперируя наглядными образами, эти учащиеся чётко осознают, что содержание обобщения не исчерпывается частными случаями. Успешно осуществляют они и образно-геометрический подход к решению многих задач.

Установленные типы, по-видимому, имеют общее значение. Наличие их подтверждается многими исследованиями [цит. по 10, с. 115].

Возрастные особенности математических способностей.

В зарубежной психологии до настоящего времени широко распространены представления о возрастных особенностях математического развития школьника, исходящих из ранних исследований Ж. Пиаже. Пиаже считал, что ребёнок только к 12 годам становится способным к абстрактному мышлению. Анализируя стадии развития математических рассуждений подростка, Л. Шоанн пришёл к выводу, что в плане наглядно-конкретном школьник мыслит до 12-13 лет, а мышление в плане формальной алгебре, связанной с овладением операциями, символами, складывается лишь к 17 годам.

Исследование отечественных психологов дают иные результаты. Ещё П.П. Блонский писал об интенсивном развитие у подростка (11-14 лет) обобщающего и абстрагирующего мышления, умения доказывать и разбираться в доказательствах.

Возникает законный вопрос: в какой мере можно говорить о математических способностях по отношению к младшим школьникам? Исследования под руководством И.В. Дубровиной, даёт основание ответить на этот вопрос следующим образом. Конечно, исключая случаи особой одарённости, мы не можем говорить о сколько-либо сформированной структуре собственно математических способностей применительно к этому возрасту. Поэтому понятие "математические способности" условно в применении к младшим школьникам - детям 7-10-лет, при исследовании компонентов математических способностей в этом возрасте речь обычно может идти лишь об элементарных формах таких компонентов. Но отдельные компоненты математических способностей формируются уже и в начальных классах.

Опытное обучение, которое осуществлялось в ряде школ сотрудниками Института психологии (Д.Б. Эльконин, В.В. Давыдов) показывает, что при специальной методике обучения младшие школьники приобретают большую способность к отвлечению и рассуждению, чем принято думать. Однако, хотя возрастные особенности школьника в большей мере зависят от условий, в которых осуществляется обучение, считать, что они целиком создаются обучением, было бы неверно. Поэтому неправильна крайняя точка зрения на этот вопрос, когда считают, что не существует никакой закономерности естественного психического развития. Более эффективная система обучения может "стать" весь процесс, но до известных пределов, может несколько измениться последовательность развития, но не может придать линии развития совершенно иной характер.

Произвольности здесь быть не может. Не может, например, способность к обобщению сложных математических отношений и методов сформироваться раньше, чем способность к обобщению простых математических отношений.

Таким образом, возрастные особенности, о которых говорится, - это несколько условное понятие. Поэтому все исследования ориентированные на общую тенденцию, на общее направление развития основных компонентов структуры математических способностей под влиянием обучения.

Половые различия в характеристике математических способностей.

Оказывают ли какое-нибудь влияние на характер развития математических способностей и на уровень достижений в соответствующей области половые различия? Имеют ли место качественно своеобразные особенности математического мышления мальчиков и девочек в школьном возрасте?

В зарубежной психологии имеются работы, где, сделана попытка выявить, отдельные качественные особенности математического мышления мальчиков и девочек. В. Штерн, говорит о своём не согласии с той точкой зрения, согласно которой различия в умственной области мужчин и женщин есть результат неодинакового воспитания. По его мнению, причины кроются в разных внутренних задатках. Поэтому женщины менее склоны к абстрактному мышлению и менее способны в этом отношении. Также проводились исследования под руководством Ч. Спирмена и Э. Торндайка, они пришли к выводу, что "в отношении способностей большой разницы нет", но при этом отмечают большую склонность девочек к детализированию, запоминанию подробностей.

Соответствующие исследования в отечественной психологии были проведены под руководством И.В. Дубровиной и С.И. Шапиро, они не обнаружили каких-либо качественных специфических особенностей в математическом мышление мальчиков и девочек. Не указали на эти различия и опрошенные ими учителя.

Разумеется, фактически мальчики чаще обнаруживают математические способности.

Победителями в математических олимпиадах чаще бывают мальчики, чем девочки. Но это фактическое различие надо отнести за счёт разницы в традициях, в воспитании мальчиков и девочек, за счет распространенного взгляда на мужские и женские профессии.

Это приводит к тому, что математика часто оказывается вне направленности интересов девочек.

1. Математические способности обуславливаются не только хорошей памятью и вниманием. Для математика важно умение уловить порядок элементов, и умение оперировать этими данными. Эта своеобразная интуиция и есть основа математической способности.

2. Возрастные особенности - это несколько условное понятие. Поэтому все исследования ориентированные на общую тенденцию, на общее направление развития основных компонентов структуры математических способностей под влиянием обучения.

3. Соответствующие исследования в отечественной психологии не обнаружили каких-либо качественных специфических особенностей в математическом мышлении мальчиков и девочек.

Генетико-математические методы психогенетики

В 20--30-х годах работами С. Райта, Дж. Холдена и Р. Фишера были заложены основы генетико-математических методов изучения процессов, происходящих в популяциях...

Изучение условий развития творческих способностей детей 5-6 лет в условиях дошкольного образовательного учреждения

Процесс развития личности человека происходит на протяжении всей его жизни и затрагивает все ее стороны: совершенствование высших психических функций, становление черт характера, развитие способностей...

Личность и направленность личности в психологии

Различают статистическую и динамическую структуры личности. Под статистической структурой понимается отвлеченная от реально функционирующей личности абстрактная модель, характеризующая основные компоненты психики индивида...

Механизмы взаимопонимания в общении

В психологической науке взаимопонимание рассматривается как комплексный феномен, состоящий, по крайней мере, из четырех компонентов. Во-первых...

Образное мышление как необходимая компонента теоретического мышления (на материале математики)

Подобные представления об этих вещах весьма полезны, поскольку ничто не является для нас более наглядным, чем фигура, ибо ее можно осязать и видеть. Р...

Особенности развития математических и спортивных способностей школьников

В литературе широко используется понятие спортивных способностей. К сожалению, это понятие до сих пор четко не определено. В него включают все параметры...

Половая дифференциация: мышление

Привлекательность диагностики общих, а не специальных способностей состоит в том, что есть возможность решить "одним махом" ряд проблем, поскольку общие способности необходимы для любой деятельности и, по мнению многих исследователей...

Психологическая характеристика математических способностей школьников. Педагогические способности и их диагностика

Структура совокупности психических качеств, которая выступает как способность, в конечном счете, определяется требованиями конкретной деятельности и является различной для разных видов деятельности. Так...

Психологические особенности допроса и других процессуальных действий в судебном следствии

Психологическая структура судебной деятельности складывается из: 1.Познавательной; 2.Конструктивной; 3.Воспитательной; Если на предварительном следствии основной является познавательная деятельность, то в суде основной...

Психология музыкальных способностей

Пути воспитания и развития педагогических способностей у учителей

Развитие способностей связано с усвоением и творческим применением знаний, навыков и умений. Особенно важна обобщенность знаний и умений -- способность человека использовать их в различных ситуациях...

Современные представления о структуре личности в трудах отечественных и зарубежных ученых

Структура личности - основные части личности и способы взаимодействия между ними. Структура личности - то, из чего (из каких элементов) и как построена личность. В самых разных моделях...

Способности и возраст

Каждая способность имеет свою структуру, где можно различить опорные и ведущие свойства. Например, основным свойством способности к изобразительному искусству будет высокая природная чувствительность зрительного анализатора...

Структура личности с позиций деятельностного подхода

Личность человека представляет собой сложную психическую систему, находящуюся в состоянии непрерывного движения, динамики, развития. Как системное образование личность включает в себя элементы...

Формы и методы работы психолога с одаренными детьми

Любая деятельность, которой овладевает человек, предъявляет высокие требования к его психологическим качествам (особенностям интеллекта, эмоционально-волевой сферы, сенсомоторики)...

  • Свойства продуктивности психических процессов
  • 3.7. Структура познавательных способностей
  • 3.8. Психология специальных способностей
  • Ощущение
  • 4. Психология общих способностей
  • 4.1. Об учёном-поэте
  • 4.2. Творческая личность и её жизненный путь
  • 4.3. Подход в.Н. Дружинина и н.В. Хазратовой
  • 4.4. Психогенетика креативности и обучаемость
  • 4.5. Обучаемость, креативность и интеллект
  • 5. Метасистемный подход в разработке проблемы способностей (а.В. Карпов)
  • 5.1. Задачи и гипотезы исследования
  • 5.2. О понятии интегральных способностей личности
  • 5.3. Рефлексивность в структуре общих способностей
  • Коэффициенты ранговой корреляции между уровнем развития общих способностей
  • Результаты «косоугольной» факторизации
  • Значения структурных «весов» переменных, входящих в первый фактор1
  • Результаты факторизации по методу «главных компонент»
  • Коэффициенты линейной корреляции между уровнем рефлексивности и баллами по субтестам «Теста умственных способностей»
  • Показатели значимости различий между высоко- и низкорефлексивными испытуемыми при выполнении субтестов «Теста умственных способностей»
  • 5.4. Уровневый статус метакогнитивных способностей
  • 6. Психология многосторонних и специальных способностей
  • 6.3. О психологии музыкальных способностей
  • Анализ некоторых компонентов музыкальных способностей Ощущения
  • Средние частоты формант гласных (в Гц)
  • 6.5. Генезис музыкального восприятия
  • Восприятие музыкального ритма
  • 6.7. Музыкальная память
  • 6.8. Основные причины неуспеха в музыкальной деятельности (е.Ф. Ященко)
  • 6.9. Психология литературных способностей
  • Личность
  • 6.11. Краткий обзор исследований математических способностей
  • 6.12. Педагогические способности
  • 6.13. Метаиндивидуальные характеристики учителя
  • Устойчивость к психическому стрессу
  • 6.14. Художественно-творческие способности
  • Основные профессиональные требования к индивидуальным особенностям артиста балета
  • 7. Исследование самоактуализации как способности у студентов разной профессиональной подготовки
  • 7.1. Возможности творческого саморазвития личности студентов (на материале изучения типа личности, акцентуаций характера и их сопряженности)
  • Ценностные ориентации типов темперамента
  • 7.2. Модели перцептивной и социальной направленности личности студентов разной профессиональной подготовки
  • 7.3. Профессионально-личностные качества и ценностные ориентации студентов факультета сервиса и лёгкой промышленности
  • Методика исследования
  • Результаты исследования и их обсуждение
  • Ранги профессиональных карьер по Дж. Холланду
  • 7. 4. Особенности самоактуализации студентов экономического и технических факультетов
  • Материал и методики
  • Результаты и их обсуждение
  • 7.5. Различия между симптомокомплексами личностных черт у студентов экономического и технических факультетов с высоким и низким уровнями развития самоактуализации
  • Факторное отображение структуры личности студентов экономического и технических факультетов, имеющих высокий и низкий уровни развития самоактуализации, после варимакс-вращения
  • 7.6. Половые и профессиональные различия в самоактуализации
  • Методика
  • Результаты
  • Средние значения показателей тестов р. Кеттелла и сат у студентов экономического и технических факультетов (дисперсионный анализ)
  • Данные, используемые для дисперсионного анализа выборки студентов экономического и технических факультетов разного пола и уровня самоактуализации
  • Данные дисперсионного анализа и уровней значимости различий индивидуально-психологических свойств студентов экономического и технических факультетов разного пола и уровня самоактуализации
  • Обсуждение результатов
  • 7.7. Ценностно-смысловая концепция самоактуализации
  • Симптомокомплексы различий личностных черт и смысложизненных ориентаций студентов разных факультетов
  • Симптомокомплексы различий личностных черт и смысложизненных ориентаций студентов разных факультетов с высоким и низким уровнями самоактуализации (са)
  • 3 Этап. Сравнительный анализ взаимосвязей личностных черт и смысложизненных ориентаций у студентов с высоким и низким уровнями са.
  • Заключение и выводы
  • Заключение
  • Общий список литературы
  • 6.11. Краткий обзор исследований математических способностей

    В исследованиях под руководством В.А. Крутецкого отражены разные уровни изучения проблемы математических, литературных и конструктивно-технических способностей. Однако все исследования были организованы и проводились по общей схеме:

    1-й этап – исследование сущности, структуры конкретных способностей;

    2-й этап – исследование возрастных и индивидуальных различий в структуре конкретных способностей, возрастной динамики развития структуры;

    3-й этап – изучение психологических основ формирования и развития способностей.

    Работы В. А. Крутецкого, И. В. Дубровиной, С. И. Шапиро дают общую картину возрастного развития математических способностей школьников на всём протяжении школьного обучения.

    Специальное исследование математических способностей школьников провёл В.А. Крутецкий (1968) . Под способностью к изучению математики он понимает индивидуально-психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обусловливающие при прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности, относительно быстрое, лёгкое и глубокое овладение знаниями, умениями и навыками в области математики. В структуре математических способностей им выделены следующие основные компоненты:

    1) способность к формализованному восприятию математического материала, схватыванию формальной структуры задачи;

    2) способность к быстрому и широкому обобщению математических объектов, отношений и действий;

    3) способность к свёртыванию процесса математического рассуждения и системы соответствующих действий – способность мыслить свёрнутыми структурами;

    4) гибкость мыслительных процессов в математической деятельности;

    5) способность к быстрой и свободной перестройке направленности мыслительного процесса, переключению с прямого на обратный ход мысли;

    6) стремление к ясности, простоте, экономности и рациональности решений;

    7) математическая память (обобщённая память на математические отношения, схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним). Методика исследования способностей к математике принадлежит В.А. Крутецкому (1968).

    Дубровиной И.В. разработана модификация этой методики применительно к учащимся 2 – 4 классов .

    Анализ материалов, изложенных в этой работе, позволяет сделать следующие выводы.

    1. У способных к математике учащихся младшего школьного возраста довольно чётко обнаруживаются такие компоненты математических способностей, как способность к аналитико-синтетическому восприятию условий задач, способность к обобщению математического материала, гибкость мыслительных процессов. Менее ясно выражены в этом возрасте такие компоненты математических способностей, как способность к свёртыванию рассуждений и системы соответствующих действий, стремление к поиску наиболее рационального, экономного (изящного) способа решения задач.

    Указанные компоненты наиболее отчётливо представлены лишь у учащихся группы «Очень способные» (ОС). Это же относится и к особенностям математической памяти младших школьников. Только у учащихся группы ОС можно обнаружить признаки обобщённой математической памяти.

    2. Проявляются все указанные выше компоненты математических способностей на доступном для учащихся младшего школьного возраста математическом материале, поэтому в более или менее элементарном виде.

    3. Заметно развитие всех указанных выше компонентов у способных к математике учащихся от 2 к 4 классу: с годами усиливается тенденция к относительно полному аналитико-синтетическому восприятию условия задачи; более широким, быстрым и уверенным становится обобщение математического материала; происходит довольно заметное развитие способности к свёртыванию рассуждений и системы соответствующих действий, которая первоначально формируется на основе однотипных упражнений, а с годами всё чаще проявляется «с места»; к 4 классу учащиеся значительно легче переключаются с одной умственной операции на другую, качественно иную, чаще видят одновременно несколько способов решения задачи; память постепенно освобождается от хранения конкретного частного материала, всё большее значение приобретает запоминание математических отношений.

    4. У исследованных малоспособных (МС) учащихся младшего школьного возраста все перечисленные выше компоненты математических способностей проявляются на сравнительно низком уровне развития (способность к обобщению математического материала, гибкость мыслительных процессов) или не обнаруживаются совсем (способность к сокращению рассуждений и системы соответствующих действий, обобщённая математическая память).

    5. Сформировать основные компоненты математических способностей на более или менее удовлетворительном уровне в процессе экспериментального обучения можно было у детей группы МС только в результате упорного, настойчивого, систематического труда как со стороны экспериментатора, так и со стороны учащихся.

    6. Возрастные различия в развитии компонентов математических способностей у малоспособных к математике младших школьников выражены слабо и нечётко.

    В статье С.И. Шапиро «Психологический анализ структуры математических способностей в старшем школьном возрасте» показано, что в отличие от менее способных учащихся, у которых информация, как правило, хранится в памяти в узкоконкретной форме, разрозненно и недифференцированно, способные к математике учащиеся запоминают, используют и воспроизводят материал в обобщённом, «свёрнутом» виде.

    Значительный интерес представляет собой исследование математических способностей и их природных предпосылок И.А. Лёвочкиной , которая считает, что хотя математические способности и не были предметом специального рассмотрения в трудах Б.М.Теплова, однако ответы на многие вопросы, связанные с их изучением, можно найти в его работах, посвященных проблемам способностей. Среди них особое место занимают две монографические работы – «Психология музыкальных способностей» и «Ум полководца», ставшие классическими образцами психологического изучения способностей и вобравшими в себя универсальные принципы подхода к этой проблеме, которые возможно и необходимо использовать при изучении любых видов способностей.

    В обеих работах Б.М.Теплов не только дает блестящий психологический анализ конкретных видов деятельности, но и на примерах выдающихся представителей музыкального и военного искусства раскрывает необходимые составляющие, из которых складываются яркие таланты в этих областях. Особое внимание Б.М.Теплов уделил вопросу о соотношении общих и специальных способностей, доказывая, что успех в любом виде деятельности, в том числе в музыке и военном деле, зависит не только от специальных компонентов (например, в музыке – слух, чувство ритма), но и от общих особенностей внимания, памяти, интеллекта. При этом общие умственные способности неразрывно связаны со специальными способностями и существенно влияют на уровень развития последних.

    Наиболее ярко роль общих способностей продемонстрирована в работе «Ум полководца». Остановимся на рассмотрении основных положений этой работы, поскольку они могут быть использованы при изучении других видов способностей, связанных с мыслительной деятельностью, в том числе и математических способностей. Проведя глубокое изучение деятельности полководца, Б.М. Теплов показал, какое место в ней занимают интеллектуальные функции. Они обеспечивают анализ сложных военных ситуаций, выявление отдельных существенных деталей, способных повлиять на исход предстоящих сражений. Именно способность к анализу обеспечивает первый необходимый этап в принятии верного решения, в составлении плана сражения. Вслед за аналитической работой наступает этап синтеза, позволяющего объединить в единое целое многообразие деталей. По мнению Б.М. Теплова, деятельность полководца требует равновесия процессов анализа и синтеза, при обязательном высоком уровне их развития.

    Важное место в интеллектуальной деятельности полководца занимает память. Совсем не обязательно, чтобы она была универсальной. Гораздо важнее, чтобы она обладала избирательностью, то есть удерживала, прежде всего, необходимые, существенные детали. В качестве классического примера такой памяти Б.М. Теплов приводит высказывания о памяти Наполеона, который помнил буквально все, что имело непосредственное отношение к его военной деятельности, начиная от номеров частей и кончая лицами солдат. При этом Наполеон был неспособен запоминать бессмысленный материал, но обладал важной особенностью мгновенно усваивать то, что подчинялось классификации, определенному логическому закону.

    Б.М. Теплов приходит к выводу, что «умение находить и выделять существенное и постоянная систематизация материала – вот важнейшие условия, обеспечивающие единство анализа и синтеза, то равновесие между этими сторонами мыслительной деятельности, которые отличают работу ума хорошего полководца» . Наряду с выдающимся умом полководец должен обладать определенными личностными качествами. Это, прежде всего, мужество, решительность, энергия, то есть то, что применительно к полководческой деятельности принято обозначать понятием «воля». Не менее важным личностным качеством является стрессоустойчивость. Эмоциональность талантливого полководца проявляется в сочетании эмоции боевого возбуждения и умении собраться, сосредоточиться.

    Особое место в интеллектуальной деятельности полководца Б.М. Теплов отводил наличию такого качества, как интуиция. Он анализировал это качество ума полководца, сравнивая его с интуицией ученого. Между ними существует много общего. Основное же отличие, по мнению Б.М. Теплова, состоит в необходимости для полководца принятия срочного решения, от которого может зависеть успех операции, в то время как ученый не ограничен временными рамками. Но и в том и другом случае "озарению" должен предшествовать упорный труд, на основе которого и может быть принято единственно верное решение проблемы.

    Подтверждения положениям, проанализированным и обобщенным Б.М. Тепловым с психологических позиций, можно обнаружить в работах многих выдающихся ученых, в том числе и математиков . Так, в психологическом этюде «Математическое творчество» Анри Пуанкаре подробно описывает ситуацию, при которой ему удалось сделать одно из открытий. Этому предшествовала долгая подготовительная работа, большой удельный вес в которой составлял, по мнению ученого, процесс бессознательного. За этапом «озарения» необходимо следовал второй этап – тщательной сознательной работы по приведению в порядок доказательства и его проверке. А. Пуанкаре пришел к выводу, что важнейшее место в математических способностях занимает умение логически выстроить цепь операций , которые приведут к решению задачи. Казалось бы, это должно быть доступно любому способному логически мыслить человеку. Однако далеко не каждый оказывается способным оперировать математическими символами с той же легкостью, что и при решении логических задач.

    Для математика недостаточно иметь хорошую память и внимание. По мнению Пуанкаре, людей, способных к математике, отличает умение уловить порядок , в котором должны быть расположены элементы, необходимые для математического доказательства. Наличие интуиции такого рода – есть основной элемент математического творчества. Одни люди не владеют этим тонким чувством и не обладают сильной памятью и вниманием, поэтому не способны понимать математику. Другие – обладают слабой интуицией, но одарены хорошей памятью и способностью к напряженному вниманию, потому могут понимать и применять математику. Третьи – владеют такой особой интуицией и даже при отсутствии отличной памяти могут не только понимать математику, но и делать математические открытия .

    Здесь речь идет о математическом творчестве , доступном немногим. Но, как писал Ж. Адамар, «между работой ученика, решающего задачу по алгебре или геометрии, и творческой работой разница лишь в уровне, в качестве, так как обе работы аналогичного характера» . Для того, чтобы понять, какие качества еще требуются для достижения успехов в математике, исследователями анализировалась математическая деятельность: процесс решения задач, способы доказательств, логических рассуждений, особенности математической памяти. Этот анализ привел к созданию различных вариантов структур математических способностей, сложных по своему компонентному составу. При этом мнения большинства исследователей сходились в одном – что нет и не может быть единственной ярко выраженной математической способности – это совокупная характеристика, в которой отражаются особенности разных психических процессов: восприятия, мышления, памяти, воображения.

    Среди наиболее важных компонентов математических способностей выделяются специфическая способность к обобщению математического материала, способность к пространственным представлениям, способность к отвлеченному мышлению. Некоторые исследователи выделяют также в качестве самостоятельного компонента математических способностей математическую память на схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним. Исследование математических способностей включает в себя и решение одной из важнейших проблем – поиска природных предпосылок, или задатков, данного вида способностей. Долгое время задатки рассматривались как фактор, фатально предопределяющий уровень и направление развития способностей. Классики отечественной психологии Б.М. Теплов и С.Л. Рубинштейн научно доказали неправомерность такого понимания задатков и показали, что источником развития способностей является тесное взаимодействие внешних и внутренних условий. Выраженность того или иного физиологического качества ни в коей мере не свидетельствует об обязательном развитии конкретного вида способностей. Оно может являться лишь благоприятным условием для этого развития. Типологические свойства, входящие в состав задатков и являющиеся важной их составляющей, отражают такие индивидуальные особенности функционирования организма, как предел работоспособности, скоростные характеристики нервного реагирования, способность перестройки реакции в ответ на изменение внешних воздействий.

    Свойства нервной системы, тесно связанные со свойствами темперамента, в свою очередь, влияют на проявление характерологических особенностей личности (В.С. Мерлин, 1986). Б.Г. Ананьев, развивая представления об общей природной основе развития характера и способностей, указывал на формирование в процессе деятельности связей способностей и характера, приводящих к новым психическим образованиям, обозначаемым терминами «талант» и «призвание» (Ананьев Б.Г., 1980). Таким образом, темперамент, способности и характер образуют как бы цепь взаимосвязанных подструктур в структуре личности и индивидуальности, имеющих единую природную основу (Э.А. Голубева, 1993).

    Основные принципы комплексного типологического подхода к изучению способностей и индивидуальности подробно изложены Э.А. Голубевой в соответствующей главе монографии. Одним из важнейших принципов является использование, наряду с качественным анализом, измерительных методов диагностики разных характеристик индивидуальности. Исходя из этого, И.А. Лёвочкина строила экспериментальное исследование математических способностей. В конкретную задачу входила диагностика свойств нервной системы, которые рассматривались в качестве задатков математических способностей, изучение личностных особенностей математически одаренных учащихся и особенностей их интеллекта. Эксперименты проводились на базе школы № 91 г. Москвы, в которой есть специализированные математические классы. В эти классы принимаются старшеклассники со всей Москвы, в основном победители районных и городских олимпиад, прошедшие дополнительное собеседование. Преподавание математики здесь ведется по более углубленной программе, дополнительно читается курс математического анализа. Исследование проводилось совместно с Е.П. Гусевой и учителем-экспериментатором В.М. Сапожниковым.

    Все ученики, с которыми довелось работать исследователю в 8-10 классах, уже определились в своих интересах и склонностях. Дальнейшую свою учебу и работу они связывают с математикой. Их успешность по математике значительно превосходит успешность учеников нематематических классов. Но при общей высокой успешности внутри этой группы учащихся наблюдаются существенные индивидуальные различия. Исследование строилось таким образом: учащихся наблюдали в процессе уроков, анализировали с помощью экспертов их контрольные работы, предлагали для решения экспериментальные задания, направленные на выявление некоторых компонентов математических способностей. Кроме того, с учащимися была проведена серия психологических и психофизиологических экспериментов. Изучались уровень развития и своеобразие интеллектуальных функций, выявлялись их личностные особенности и типологические особенности нервной системы. Всего на протяжении нескольких лет были обследованы 57 учеников с выраженными способностями к математике.

    Результаты

    Объективное измерение уровня интеллектуального развития при помощи теста Векслера у математически одаренных ребят показало, что большинство из них имеет очень высокий уровень общего интеллекта. Цифровые значения общего интеллекта многих учащихся, обследованных нами, превышали 130 баллов. Такой величины значения по некоторым нормативным классификациям обнаруживаются лишь у 2,2% населения. В подавляющем большинстве случаев наблюдали преобладание вербального интеллекта над невербальным. Сам по себе факт наличия высокоразвитого общего и вербального интеллекта у детей с выраженными математическими способностями не является неожиданным. Многие исследователи математических способностей отмечали, что высокая степень развития словесно-логических функций является необходимым условием для математических способностей. И.А. Лёвочкину интересовала не только количественная характеристика интеллекта, но и то, как она связана с психофизиологическими, природными особенностями учащихся. Индивидуальные особенности нервной системы диагностировались с помощью электроэнцефалографической методики. В качестве показателей свойств нервной системы были использованы фоновые и реактивные характеристики электроэнцефалограммы, запись которой производилась на 17-ти канальном энцефалографе. По этим показателям проводилась диагностика силы, лабильности и активированности нервной системы.

    И.А. Лёвочкина установила, используя статистические методы анализа, что более высокий уровень вербального и общего интеллекта в этой выборке имели обладатели более сильной нервной системы. Они же имели и более высокие оценки успеваемости по предметам естественного и гуманитарного циклов. По данным других исследователей, полученным на подростках-старшеклассниках общеобразовательных школ, более высокий уровень интеллекта и лучшую успеваемость имели обладатели слабой нервной системы (Голубева Э.А. с соавт. 1974, Кадыров Б.Р. 1977). Причину такого расхождения следует, вероятно, искать, прежде всего, в характере самой учебной деятельности. Учащиеся математических классов испытывают значительно большие учебные нагрузки, по сравнению с учениками обычных классов. С ними проводятся дополнительные факультативы, кроме того, помимо обязательных домашних и классных заданий, они решают множество заданий, связанных с подготовкой в высшие учебные заведения. Интересы этих ребят смещены в сторону повышенной постоянной умственной нагрузки. Такие условия деятельности предъявляют повышенные требования к выносливости, работоспособности, а поскольку главным, определяющим признаком свойства силы нервной системы является способность выдерживать длительное возбуждение, не входя в состояние запредельного торможения, то, видимо. поэтому наибольшую результативность демонстрируют те учащиеся, которые обладают такими характеристиками нервной системы, как выносливость, работоспособность.

    В.А. Крутецкий, изучая математическую деятельность способных к математике учеников, обращал внимание на их характерную особенность – способность к длительному поддержанию напряжения, когда ученик может долго и сосредоточенно заниматься, не обнаруживая усталости. Эти наблюдения позволили ему предположить, что такое свойство, как сила нервной системы, может являться одной из природных предпосылок, благоприятствующих развитию математических способностей. Полученные нами соотношения отчасти подтверждают это предположение. Почему лишь отчасти? Пониженная утомляемость в процессе занятий математикой отмечалась многими исследователями у способных к математике учеников по сравнению с неспособными к ней. И.А. Лёвочкина обследовала выборку, которая состояла только из способных учащихся. Однако среди них были не только обладатели сильной нервной системы, но и те, кто характеризовались как обладатели слабой нервной системы. Это означает, что не только высокая общая работоспособность, являющаяся благоприятной природной основой для успешности в данном виде деятельности, может обеспечивать развитие математических способностей.

    Анализ личностных особенностей показал, что в целом для группы учащихся с более слабой нервной системы оказались более характерны такие черты личности, как разумность, рассудительность, упорство (фактор J+ по Кеттеллу), а также независимость, самостоятельность (фактор Q2+). Лица с высокими оценками по фактору J уделяют много внимания планированию поведения, анализируют свои ошибки, проявляя при этом «осторожный индивидуализм». Высокие оценки по фактору Q2 имеют люди, склонные к самостоятельному принятию решений, способные нести за них ответственность. Этот фактор обозначается как «мыслящая интроверсия». Вероятно, обладатели слабой нервной системы достигают успешности в данном виде деятельности в том числе за счет формирования таких качеств, как планирование действий, самостоятельность.

    Можно также предположить, что разные полюса данного свойства нервной системы могут быть связаны с разными компонентами математических способностей. Так известно, что свойство слабости нервной системы характеризуется повышенной чувствительностью. Именно она может лежать в основе способности интуитивного, внезапного постижения истины, «озарения» или догадки, что является одним из важных компонентов математических способностей. И хотя это только предположение, но его подтверждение можно найти в конкретных примерах среди математически одаренных учеников. Вот два самых ярких таких примера . Дима на основании результатов объективной психофизиологической диагностики может быть отнесен к представителям сильного типа нервной системы. Он – «звезда первой величины» в математическом классе. Важно отметить то, что блестящих успехов он достигает без каких-либо видимых усилий, с легкостью. Никогда не жалуется на усталость. Уроки, занятия математикой являются для него необходимой постоянной умственной гимнастикой. Особое предпочтение отдается решению нестандартных, сложных задач, требующих напряжения мысли, глубокого анализа, строгой логический последовательности. Дима не допускает неточностей в изложении материала. Если учитель при объяснении делает логические пропуски, Дима обязательно обратит на это внимание. Его отличает высокая интеллектуальная культура. Это подтверждается и результатами тестирования. У Димы самый высокий в обследованной группе показатель общего интеллекта – 149 усл.ед.

    Антон – один из самых ярких представителей слабого типа нервной системы, которого нам довелось наблюдать среди математически одаренных ребят. Он очень быстро утомляется на уроке, не в состоянии долго и сосредоточенно работать, часто оставляет одни дела, чтобы без достаточного обдумывания взяться за другие. Случается, что он отказывается от решения задачи, если предвидит, что оно потребует больших усилий. Однако, несмотря на эти особенности, учителя очень высоко оценивают его математические способности. Дело в том, что он обладает прекрасной математической интуицией. Часто бывает, что он первым решает сложнейшие задания, выдавая конечный результат и опуская при этом все промежуточные этапы решения. Для него характерна способность к «озарению». Он не затрудняет себя объяснением, почему выбрано именно такое решение, но на проверку оно оказывается оптимальным и оригинальным.

    Математические способности очень сложны и многогранны по своей структуре. И тем не менее, выделяются как бы два основных типа людей с их проявлением – это «геометры» и «аналитики». В истории математики яркими примерами этого могут являться такие имена, как Пифагор и Евклид (крупнейшие геометры), Ковалевская и Клейн (аналитики, создатели теории функций). В основе такого деления лежат прежде всего индивидуальные особенности восприятия действительности, в том числе и математического материала. Оно определяется не предметом, над которым работает математик: аналитики и в геометрии остаются аналитиками, тогда как геометры любую математическую реальность предпочитают воспринимать образно. В этой связи уместно привести высказывание А. Пуанкаре: «Отнюдь не обсуждаемый ими вопрос заставляет их использовать тот или другой метод. Если часто об одних говорят, что они аналитики, а других называют геометрами, то это не мешает тому, что первые остаются аналитиками, даже когда занимаются вопросами геометрии, в то время как другие являются геометрами, даже если занимаются чистым анализом» .

    В школьной практике при работе с одаренными учащимися эти различия проявляются не только в разной успешности овладения разными разделами математики, но и в предпочтительном отношении к принципам решения задач. Одни ученики любые задачи стремятся решить с помощью формул, логического рассуждения, другие по возможности используют пространственные представления. Причем эти различия являются весьма устойчивыми. Конечно, среди учеников встречаются и такие, у которых наблюдается определенное равновесие этих характеристик. Они одинаково ровно овладевают всеми разделами математики, используя при этом разные принципы подхода к решению разных задач. Индивидуальные различия между учащимися в подходах к решению задач и методах их решения были выявлены И.А. Лёвочкиной не только благодаря наблюдению за учащимися при работе на уроках, но и экспериментальным путем. Для анализа отдельных компонентов математических способностей учителем-экспериментатором В.М. Сапожниковым была разработана серия специальных экспериментальных задач. Анализ результатов решения задач этой серии позволил получить объективное представление о характере мыслительной деятельности школьников и о соотношении образного и аналитического компонентов математического мышления.

    Были выявлены учащиеся, которые лучше справлялись с решением алгебраических задач, а также те, кто лучше решал геометрические задачи. Эксперимент показал, что среди учащихся есть представители аналитического типа математического мышления, которые характеризуются явным преобладанием вербально-логического компонента. У них нет потребности в наглядных схемах, они предпочитают оперировать знаковыми символами. Мышление учащихся, оказывающих предпочтение геометрическим заданиям, характеризуется большей выраженностью наглядно-образного компонента. Эти учащиеся испытывают потребность в наглядном представлении и интерпретации в выражении математических отношений и зависимостей.

    Из общего числа математически одаренных учеников, принявших участие в экспериментах, были выделены самые яркие «аналитики» и «геометры», составившие две крайние группы. В группу «аналитиков» вошли 11 человек, наиболее ярких представителей вербально-логического типа мышления. Группа «геометров» состояла из 5 человек, с ярким наглядно-образным типом мышления. Тот факт, что в группу ярких представителей «геометров» удалось отобрать значительно меньше учеников, можно объяснить, на наш взгляд, следующим обстоятельством. При проведении математических конкурсов и олимпиад недостаточно учитывается роль наглядно-образных компонентов мышления. В конкурсных заданиях удельный вес задач по геометрии невысок – из 4 – 5 заданий в лучшем случае одно направлено на выявление пространственных представлений у учащихся. Тем самым при отборе как бы «отсекаются» потенциально способные математики-геометры с ярким наглядно-образным типом мышления. Дальнейший анализ проводился с использованием статистического метода сравнения групповых различий (t-критерий Стьюдента) по всем, имевшимся в распоряжении психофизиологическим и психологическим показателям.

    Известно, что типологическая концепция И.П. Павлова помимо физиологической теории свойств нервной системы включала в себя классификацию специально человеческих типов высшей нервной деятельности, различающихся по соотношению сигнальных систем. Это – «художники», с преобладанием первой сигнальной системы, «мыслители», с преобладанием второй сигнальной системы, и средний тип, с равновесием обеих систем. Для «мыслителей» наиболее характерным является абстрактно-логический способ переработки информации, тогда как «художники» обладают ярким образным целостным восприятием действительности. Безусловно, эти различия не носят абсолютный характер, а отражают лишь преимущественные формы реагирования. Те же принципы лежат в основе различий между «аналитиками» и «геометрами». Первые предпочитают аналитические способы решения любых математических задач, то есть по типу приближаются к «мыслителям». «Геометры» стремятся вычленить в задачах образные компоненты, тем самым действуют так, как характерно для «художников».

    В последнее время появился ряд работ, в которых предпринимались попытки объединить учение об основных свойствах нервной системы с представлениями о специально человеческих типах – «художниках» и «мыслителях». Установлено, что к «художественному» типу тяготеют обладатели сильной, лабильной и активированной нервной системы, а к «мыслительному» – слабой, инертной и инактивированной нервной системы (Печенков В.В., 1989). В работе И.А. Лёвочкиной из показателей различных свойств нервной системы наиболее информативной психофизиологической характеристикой при диагностике типов математического мышления оказалась характеристика свойства силы–слабости нервной системы. В группу «аналитиков» вошли обладатели относительно более слабой нервной системы, по сравнению с группой «геометров», то есть выявленные различия между группами по свойству силы–слабости нервной системы оказались в русле ранее полученных результатов. По двум другим свойствам нервной системы (лабильности, активированности) статистически значимых различий установлено не было, а наметившиеся тенденции не противоречат исходным предположениям.

    Проведен также сравнительный анализ результатов диагностики личностных особенностей, полученных с помощью опросника Кэттелла. Статистически значимые различия между группами были установлены по двум факторам – Н и J. По фактору Н группу «аналитиков» можно в целом характеризовать как относительно более сдержанную, с ограниченным кругом интересов (Н-). Обычно люди с низкими показателями по этому фактору замкнуты, не стремятся к дополнительным контактам с людьми. Группа «геометров» имеет по этому личностному фактору большие величины (Н+) и отличается по нему определенной беззаботностью, общительностью. Такие люди не испытывают трудностей в общении, много и охотно идут на контакты, не теряются в неожиданных обстоятельствах. Они артистичны, способны выдерживать значительные эмоциональные нагрузки. По фактору J, который в целом характеризует такую черту личности, как индивидуализм, группа «аналитиков» имеет высокие среднегрупповые значения. Это означает, что им свойственны разумность, рассудительность, упорство. Люди, имеющие высокий вес по этому фактору, уделяют много внимания планированию своего поведения, при этом оставаясь замкнутыми и действуя индивидуально.

    В противовес им, ребята, входящие в группу «геометров», энергичны, экспрессивны. Они любят совместные действия, готовы включиться в групповые интересы и проявить при этом свою активность. Наметившиеся различия показывают, что исследуемые группы математически одаренных учащихся наиболее расходятся по двум факторам, которые, с одной стороны, характеризуют определенную эмоциональную направленность (сдержанность, рассудительность – беззаботность, экспрессивность), с другой, особенности в межличностных отношениях (замкнутость – общительность). Интересно, что описание этих черт в значительной степени совпадает с описанием типов экстравертов–интровертов, предложенных Айзенком. В свою очередь, эти типы имеют определенную психофизиологическую интерпретацию. Экстраверты – это сильные, лабильные, активированные; интроверты – слабые, инертные, инактивированные. Тот же набор психофизиологических характеристик получен для специально человеческих типов высшей нервной деятельности – «художников» и «мыслителей».

    Результаты, полученные И.А. Лёвочкиной, позволяют выстроить определенные синдромы взаимосвязи психофизиологических, психологических признаков и типов математического мышления.

    «Аналитики» «Геометры»

    (абстрактно-логический (наглядно-образный тип мышления)

    тип мышления)

    Слабая н.с. Сильная н.с. рассудительность беззаботность замкнутость общительность интроверты экстраверты

    Таким образом, проведенное И.А. Лёвочкиной комплексное исследование математически одаренных школьников позволило экспериментально подтвердить наличие определенного сочетания психологических и психофизиологических факторов, составляющих благоприятную основу для развития математических способностей. Это касается как общих, так и специальных моментов в проявлении данного вида способностей.

    Несколько слов о способностях к чтению чертежей .

    В исследовании Н. П. Линьковой «Способности к чтению чертежей у младших школьников» доказано, что умение читать и выполнять чертежи – одно из условий, обеспечивающих успешность деятельности в области техники. Поэтому изучение способностей к чтению чертежей входит в качестве составной части в исследование, посвященное техническому творчеству.

    Обычно конструктор использует чертежи для выражения мыслей, возникающих у него в процессе решения задачи.

    Конструктору необходим такой уровень владения навыками чтения чертежей, при котором сам процесс создания образа по его плоскому изображению превращается из специальной цели в средство, помогающее решать какую-либо другую задачу.

    Разница между этими двумя уровнями владения навыками чтения чертежей заключается не только в том, какая цель при этом ставится – представить объект по его изображению или использовать полученный образ для решения какой-либо задачи, но и в самом характере деятельности.

      Эксперименты, проведённые с младшими школьниками, подтвердили результаты, полученные в работе с учениками старших классов.

    Для успешного овладения приёмами чтения чертежей наиболее важной является способность ученика к определённым логическим операциям. К ним, прежде всего, относится умение проводить логический анализ изображений и соотносить их между собой, выдвигать гипотезы, предвосхищающие решения, делать логические заключения на основе имеющихся изображений и проводить необходимую проверку своих предположений.

    Способность к овладению такого рода операциями, условно названную способностью к логическому мышлению, можно считать центральной среди компонентов, обеспечивающих успешное овладение приёмами чтения чертежей.

    Она должна сочетаться с гибкостью мышления, со способностью отказываться от неправильного пути, по которому пошло решение, или даже от уже полученного решения.

    Мысленное представление образа объекта на основе его изображения может возникнуть только в результате такого анализа.

    Появление образа является результатом определённых действий. Если задача для ученика слишком лёгкая, эти действия носят свёрнутый, малозаметный характер. Но они сразу же проявляются в случае усложнения задачи или появления в ходе решения каких-либо затруднений.

    Успешность чтения чертежей обеспечивается одновременно и логическим анализом изображения, и деятельностью пространственного воображения, без которого невозможно возникновение образа. Однако логическому анализу принадлежит в этой работе ведущая роль. Он определяет направление поиска решения – неудачный или неполный анализ приводит к появлению неправильного образа.

    Способность к созданию устойчивых и ярких образов в данной ситуации только усложнит положение.

    2. Эксперименты показали, что у некоторых учеников младшего школьного возраста компоненты способностей, необходимые для овладения приёмами чтения чертежей, достигли такого уровня, что они без всяких затруднений выполняют самые разнообразные задания из школьного курса черчения.

    У большей же части учеников этого возраста необходимость проводить логический анализ изображений, делать умозаключения и обосновывать свои решения вызывает серьёзные затруднения. Речь идёт о степени развития способности к логическому мышлению.

    Вывод: обучение проекционному черчению можно начинать в начальной школе. Возможность организации такого обучения была проверена в ходе специального эксперимента, проведённого совместно с Э.А. Фарапоновой (Линькова, Фарапонова, 1967).

    Но при организации такого обучения в методику должны быть внесены серьёзные изменения.

    Эти изменения должны, прежде всего, идти по линии ослабления на первом этапе обучения требований к логическому анализу. Не менее важно, если не разгрузить, то хотя бы не усложнять требований, предъявляемых к пространственному воображению введением таких приёмов объяснения материала, как проектирование точек на плоскости трёхгранного угла, мысленный поворот моделей или их изображений.

    Объясняется данное требование не столько слабым развитием у детей этого возраста пространственного воображения (большей частью оно оказывается достаточно развитым), сколько их неподготовленностью к одновременному выполнению нескольких операций.

      Проведённое исследование показало наличие очень больших индивидуальных различий между учениками в степени развития у них способностей, необходимых для овладения приёмами чтения чертежей, начиная с момента прихода их в школу. Вопрос о причинах этих различий и о путях развития данных способностей не рассматривается в исследовании Н.П. Линьковой.

    Способности - индивидуально выраженные возможности к успешному осуществлению той или иной деятельности. Включают в себя как отдельные знания, умения навыки, так и готовность к обучению новым способам и приемам деятельности. Для классификации способностей используются разные критерии. Так, могут быть выделены сенсомоторные, перцептивные, мнемические, имажинативные, мыслительные, коммуникативные способности. В качестве другого критерия может выступать та или иная предметная область, в соответствии с чем способности могут быть квалифицированы как научные (математические, лингвистические, гуманитарные); творческие (музыкальные, литературные, художественные); инженерные.

    Кратко сформулируем несколько положений общей теории способностей:

    1. Способности – это всегда способности к определенному роду деятельности , они существуют только в соответствующей конкретной деятельности человека. Поэтому они и выявлены могут быть лишь на основе анализа конкретной деятельности. Соответственно этому и математические способности существуют только в математической деятельности и в ней должны выявляться.

    2. Способности – понятие динамическое. Они не только проявляются и существуют в деятельности, они в деятельности создаются, в деятельности и развиваются. Соответственно этому и математические способности существуют только в динамике, в развитии, они формируются, развиваются в математической деятельности.

    3. В отдельные периоды развития человека возникают наиболее благоприятные условия для становления и развития отдельных видов способностей и некоторые из этих условий имеют временный, преходящий характер. Такие возрастные периоды, когда условия для развития тех или иных способностей будут наиболее оптимальными, называются сензитивными (Л. С. Выготский, А. Н. Леонтьев). Очевидно, и для развития математических способностей существуют оптимальные периоды.

    4. Успешность деятельности зависит от комплекса способностей. Равно и успешность математической деятельности зависит не от отдельно взятой способности, а от комплекса способностей.

    5. Высокие достижения в одной и той же деятельности могут быть обусловлены различным сочетанием способностей. Поэтому принципиально можно говорить о различных типах способностей, в том числе и математических.

    6. Возможна в широких пределах компенсация одних способностей другими, вследствие чего относительная слабость какой-нибудь одной способности компенсируется другой способностью, что в итоге не исключает возможности успешного выполнения соответствующей деятельности. А. Г. Ковалев и В. Н. Мясищев понимают компенсацию шире – говорят о возможности компенсации недостающей способности умением, характерологическими качествами (терпением, настойчивостью). По-видимому, компенсация того и другого вида может иметь место и в области математических способностей.

    7. Сложным и не до конца решенным в психологии является вопрос о соотношении общей и специальной одаренности. Б. М. Теплов склонен был отрицать само понятие общей одаренности, безотносительной к конкретной деятельности. Понятия «способность» и «одаренность» по Б. М. Теплову имеют смысл только в соотношении с конкретными исторически развивающимися формами общественно-трудовой деятельности. Следует, по его мнению говорить о другом, о более общих и более специальных моментах в одаренности. С. Л. Рубинштейн справедливо отметил, что не следует противопоставлять друг другу общую и специальную одаренность – наличие специальных способностей накладывает определенный отпечаток на общую одаренность, а наличие общей одаренности сказывается на характере специальных способностей. Б. Г. Ананьев указал на то, что следует различать общее развитие и специальное развитие и соответственно общие и специальные способности. Каждое из этих понятий правомерно, обе соответствующие категории взаимосвязаны. Б. Г. Ананьев подчеркивает роль общего развития в становлении специальных способностей.

    Исследование математических способностей в зарубежной психологии.

    В исследование математических способностей внесли свой вклад и такие яркие представители определенных направлений в психологии, как А. Бинэ, Э. Трондайк и Г. Ревеш, и такие выдающиеся математики, как А. Пуанкаре и Ж. Адамар.

    Большое разнообразие направлений определило и большое разнообразие в подходе к исследованию математических способностей, в методических средствах и теоретических обобщениях.

    Единственное, в чем сходятся все исследователи, это, пожалуй, мнение о том, что следует различать обычные, «школьные» способности к усвоению математических знаний, к их репродуцированию и самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта.

    Большое единство взглядов проявляют зарубежные исследователи по вопросу о врожденности или приобретенности математических способностей . Если и здесь различать два разных аспекта этих способностей – «школьные» и творческие способности, то в отношении вторых существует полное единство – творческие способности ученого-математика являются врожденным образованием, благоприятная среда необходима только для их проявления и развития. В отношении «школьных» (учебных) способностей зарубежные психологи высказываются не столь единодушно. Здесь, пожалуй, доминирует теория параллельного действия двух факторов – биологического потенциала и среды.

    Основным вопросом в исследовании математических способностей (как учебных, так и творческих) за рубежом был и остается вопрос о сущности этого сложного психологического образования . В этом плане можно выделить три важные проблемы.

    1. Проблема специфичности математических способностей . Существуют ли собственно математические способности как специфическое образование, отличное от категории общего интеллекта? Или математические способности есть качественная специализация общих психических процессов и свойств личности, то есть общие интеллектуальные способности, развитые применительно к математической деятельности? Иначе говоря, можно ли утверждать, что математическая одаренность – это не что иное, как общий интеллект плюс интерес к математике и склонность заниматься ею?

    2. Проблема структурности математических способностей. Является ли математическая одаренность унитарным (единым неразложимым) или интегральным (сложным) свойством? В последнем случае можно ставить вопрос о структуре математических способностей, о компонентах этого сложного психического образования.

    3. Проблема типологических различий в математических способностях. Существуют ли различные типы математической одаренности или при одной и той же основе имеют место различия только в интересах и склонностях к тем или иным разделам математики?

    Исследование проблемы способностей в отечественной психологии.

    Основным положением отечественной психологии в этом вопросе является положение о решающем значении социальных факторов в развитии способностей, ведущей роли социального опыта человека, условий его жизни и деятельности. Психические особенности не могут быть врожденными. Это целиком относится и к способностям. Способности всегда результат развития. Они формируются и развиваются в жизни, в процессе деятельности, в процессе обучения и воспитания.

    Итак, решающую и определяющую роль играют общественный опыт, социальное воздействие, воспитание. Ну а какова же роль прирожденных способностей?

    Конечно, трудно определить в каждом конкретном случае относительную роль врожденного и приобретенного, так как и то и другое слито, неразличимо. Но принципиальное решение этого вопроса в отечественной психологии таково: врожденными способности быть не могут, врожденными могут быть только задатки способностей – некоторые анатомо-физиологические особенности мозга и нервной системы, с которыми человек появляется на свет.

    Но какова роль в развитии способностей этих врожденных биологических факторов?

    Как отмечал С. Л. Рубинштейн, способности не предопределены, но и не могут быть просто насаждены извне. В индивидах должны существовать предпосылки, внутренние условия для развития способностей. А. Н. Леонтьев, А. Р. Лурия также говорят о необходимых внутренних условиях, делающих возможным возникновение способностей.

    Способности не заключены в задатках. В онтогенезе они не проявляются, а формируются. Задаток не потенциальная способность (а способность не задаток в развитии), так как анатомо-физиологическая особенность ни при каких условиях не может развиваться в психическую особенность.

    Несколько иное понимание задатков дается в работах А. Г. Ковалева и В. Н. Мясищева. Под задатками они понимают психофизиологические свойства, в первую очередь те, которые обнаруживаются в самой ранней фазе овладении той или иной деятельностью (например, хорошее цветоразличение, зрительная память). Другими словами, задатки – это первичная природная способность, еще не развитая, но дающая себя знать при первых пробах деятельности.

    Однако и при таком понимании задатков сохраняется основное положение: способности в собственном смысле слова формируются в деятельности, являются прижизненным образованием.

    Естественно, все вышесказанное можно отнести и к вопросу о математических способностях, как виду общих способностей.

    Математические способности и их природные предпосылки (работы Б. М. Теплова).

    Хотя математические способности и не были предметом специального рассмотрения в трудах Б. М. Теплова, однако ответы на многие вопросы, связанные с их изучением, можно найти в его работах, посвященных проблемам способностей. Среди них особое место занимают две монографические работы - "Психология музыкальных способностей" и "Ум полководца", ставшие классическими образцами психологического изучения способностей и вобравшими в себя универсальные принципы подхода к этой проблеме, которые возможно и необходимо использовать при изучении любых видов способностей.

    В обеих работах Б. М. Теплов не только дает блестящий психологический анализ конкретных видов деятельности, но и на примерах выдающихся представителей музыкального и военного искусства раскрывает необходимые составляющие, из которых складываются яркие таланты в этих областях. Особое внимание Б. М. Теплов уделил вопросу о соотношении общих и специальных способностей, доказывая, что успех в любом виде деятельности, в том числе в музыке и военном деле, зависит не только от специальных компонентов (например, в музыке - слух, чувство ритма), но и от общих особенностей внимания, памяти, интеллекта. При этом общие умственные способности неразрывно связаны со специальными способностями и существенно влияют на уровень развития последних.

    Наиболее ярко роль общих способностей продемонстрирована в работе "Ум полководца". Остановимся на рассмотрении основных положений этой работы, поскольку они могут быть использованы при изучении других видов способностей, связанных с мыслительной деятельностью, в том числе и математических способностей. Проведя глубокое изучение деятельности полководца, Б. М. Теплов показал, какое место в ней занимают интеллектуальные функции. Они обеспечивают анализ сложных военных ситуаций, выявление отдельных существенных деталей, способных повлиять на исход предстоящих сражений. Именно способность к анализу обеспечивает первый необходимый этап в принятии верного решения, в составлении плана сражения. Вслед за аналитической работой наступает этап синтеза, позволяющего объединить в единое целое многообразие деталей. По мнению Б. М. Теплова, деятельность полководца требует равновесия процессов анализа и синтеза, при обязательном высоком уровне их развития.

    Важное место в интеллектуальной деятельности полководца занимает память. Она очень избирательна, то есть удерживает прежде всего необходимые, существенные детали. В качестве классического примера такой памяти Б. М. Теплов приводит высказывания о памяти Наполеона, который помнил буквально все, что имело непосредственное отношение к его военной деятельности, начиная от номеров частей и кончая лицами солдат. При этом Наполеон был неспособен запоминать бессмысленный материал, но обладал важной особенностью мгновенно усваивать то, что подчинялось классификации, определенному логическому закону.

    Б. М. Теплов приходит к выводу, что "умение находить и выделять существенное и постоянная систематизация материала - вот важнейшие условия, обеспечивающие единство анализа и синтеза, то равновесие между этими сторонами мыслительной деятельности, которые отличают работу ума хорошего полководца" (Б. М. Теплов 1985, стр.249). Наряду с выдающимся умом полководец должен обладать определенными личностными качествами. Это прежде всего мужество, решительность, энергия, то есть то, что применительно к полководческой деятельности принято обозначать понятием "воля". Не менее важным личностным качеством является стрессоустойчивость. Эмоциональность талантливого полководца проявляется в сочетании эмоции боевого возбуждения и умении собраться, сосредоточиться.

    Особое место в интеллектуальной деятельности полководца Б. М. Теплов отводил наличию такого качества, как интуиция. Он анализировал это качество ума полководца, сравнивая его с интуицией ученого. Между ними существует много общего. Основное же отличие, по мнению Б. М. Теплова, состоит в необходимости для полководца принятия срочного решения, от которого может зависеть успех операции, в то время как ученый не ограничен временными рамками. Но и в том и другом случае "озарению" должен предшествовать упорный труд, на основе которого и может быть принято единственно верное решение проблемы.

    Подтверждения положениям, проанализированным и обобщенным Б. М. Тепловым с психологических позиций, можно обнаружить в работах многих выдающихся ученых, в том числе и математиков. Так, в психологическом этюде "Математическое творчество" Анри Пуанкаре подробно описывает ситуацию, при которой ему удалось сделать одно из открытий. Этому предшествовала долгая подготовительная работа, большой удельный вес в которой составлял, по мнению ученого, процесс бессознательного. За этапом "озарения" необходимо следовал второй этап - тщательной сознательной работы по приведению в порядок доказательства и его проверке. А. Пуанкаре пришел к выводу, что важнейшее место в математических способностях занимает умение логически выстроить цепь операций, которые приведут к решению задачи. Казалось бы, это должно быть доступно любому способному логически мыслить человеку. Однако далеко не каждый оказывается способным оперировать математическими символами с той же легкостью, что и при решении логических задач.

    Для математика недостаточно иметь хорошую память и внимание. По мнению Пуанкаре, людей, способных к математике, отличает умение уловить порядок, в котором должны быть расположены элементы, необходимые для математического доказательства. Наличие интуиции такого рода - есть основной элемент математического творчества. Одни люди не владеют этим тонким чувством и не обладают сильной памятью и вниманием и поэтому не способны понимать математику. Другие обладают слабой интуицией, но одарены хорошей памятью и способностью к напряженному вниманию и потому могут понимать и применять математику. Третьи владеют такой особой интуицией и даже при отсутствии отличной памяти могут не только понимать математику, но и делать математические открытия (Пуанкаре А., 1909).

    Здесь речь идет о математическом творчестве, доступном немногим. Но, как писал Ж. Адамар, "между работой ученика, решающего задачу по алгебре или геометрии, и творческой работой разница лишь в уровне, в качестве, так как обе работы аналогичного характера" (Адамар Ж., стр.98). Для того чтобы понять, какие качества еще требуются для достижения успехов в математике, исследователями анализировалась математическая деятельность: процесс решения задач, способы доказательств, логических рассуждений, особенности математической памяти. Этот анализ привел к созданию различных вариантов структур математических способностей, сложных по своему компонентному составу. При этом мнения большинства исследователей сходились в одном - что нет и не может быть единственной ярко выраженной математической способности - это совокупная характеристика, в которой отражаются особенности разных психических процессов: восприятия, мышления, памяти, воображения.

    Среди наиболее важных компонентов математических способностей выделяются специфическая способность к обобщению математического материала, способность к пространственным представлениям, способность к отвлеченному мышлению. Некоторые исследователи выделяют также в качестве самостоятельного компонента математических способностей математическую память на схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним. Советский психолог, исследовавший математические способности у школьников, В. А. Крутецкий дает следующее определение математическим способностям: "Под способностями к изучению математики мы понимаем индивидуально-психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обусловливающие на прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, легкое и глубокое овладение знаниями, умениями и навыками в области математики" (Крутецкий В.А.,1968).

    Исследование математических способностей включает в себя и решение одной из важнейших проблем - поиска природных предпосылок, или задатков, данного вида способностей. К задаткам относятся врожденные анатомо-физиологические особенности индивида, которые рассматриваются как благоприятные условия для развития способностей. Долгое время задатки рассматривались как фактор, фатально предопределяющий уровень и направление развития способностей. Классики отечественной психологии Б. М. Теплов и С. Л. Рубинштейн научно доказали неправомерность такого понимания задатков и показали, что источником развития способностей является тесное взаимодействие внешних и внутренних условий. Выраженность того или иного физиологического качества ни в коей мере не свидетельствует об обязательном развитии конкретного вида способностей. Оно может являться лишь благоприятным условием для этого развития. Типологические свойства, входящие в состав задатков и являющиеся важной их составляющей, отражают такие индивидуальные особенности функционирования организма, как предел работоспособности, скоростные характеристики нервного реагирования, способность перестройки реакции в ответ на изменение внешних воздействий.

    Свойства нервной системы, тесно связанные со свойствами темперамента, в свою очередь, влияют на проявление характерологических особенностей личности (В. С. Мерлин, 1986). Б. Г. Ананьев, развивая представления об общей природной основе развития характера и способностей, указывал на формирование в процессе деятельности связей способностей и характера, приводящих к новым психическим образованиям, обозначаемым терминами "талант" и "призвание" (Ананьев Б.Г., 1980). Таким образом, темперамент, способности и характер образуют как бы цепь взаимосвязанных подструктур в структуре личности и индивидуальности, имеющих единую природную основу (Э. А. Голубева 1993).

    Общая схема структуры математических способностей в школьном возрасте по В. А. Крутецкому.

    Собранный В. А. Крутецким материал позволил ему выстроить общую схему структуры математических способностей в школьном возрасте.

    1. Получение математической информации.

    1) Способность к формализованному восприятию математического материала, схватыванию формальной структуры задачи.

    2. Переработка математической информации.

    1) Способность к логическому мышлению в сфере количественных и пространственных отношений, числовой и знаковой символики. Способность мыслить математическими символами.

    2) Способность к быстрому и широкому обобщению математических объектов, отношений и действий.

    3) Способность к свертыванию процесса математического рассуждения и системы соответствующих действий. Способность мыслить свернутыми структурами.

    4) Гибкость мыслительных процессов в математической деятельности.

    5) Стремление к ясности, простоте, экономности и рациональности решений.

    6) Способность к быстрой и свободной перестройке направленности мыслительного процесса, переключению с прямого на обратный ход мысли (обратимость мыслительного процесса при математическом рассуждении).

    3. Хранение математической информации.

    1) Математическая память (обобщенная память на математические отношения, типовые характеристики, схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним).

    4. Общий синтетический компонент.

    1) Математическая направленность ума.

    Выделенные компоненты тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, целостную структуру, своеобразный синдром математической одаренности, математический склад ума.

    Не входят в структуру математической одаренности те компоненты, наличие которых в этой системе не обязательно (хотя и полезно). В этом смысле они являются нейтральными по отношению к математической одаренности. Однако их наличие или отсутствие в структуре (точнее, степень их развития) определяют тип математического склада ума. Не являются обязательными в структуре математической одаренности следующие компоненты:

    1. Быстрота мыслительных процессов как временная характеристика.

    2. Вычислительные способности (способности к быстрым и точным вычислениям, часто в уме).

    3. Память на цифры, числа, формулы.

    4. Способность к пространственным представлениям.

    5. Способность наглядно представить абстрактные математические отношения и зависимости.

    Заключение.

    Проблема математических способностей в психологии представляет обширное поле действия для исследователя. В силу противоречий между различными течениями в психологии, а также внутри самих течений, пока не может быть и речи о точном и строгом понимании содержания этого понятия.

    Рассмотренные в данной работе книги подтверждают это заключение. Вместе с тем следует отметить неугасающий интерес к этой проблеме во всех течениях психологии, что подтверждает следующий вывод.

    Практическая ценность исследований по этой теме очевидна: математическое образование играет ведущую роль в большинстве образовательных систем, а оно, в свою очередь, станет более эффективным после научного обоснования его основы – теории математических способностей.

    Итак, как утверждал В. А. Крутецкий: «Задача всестороннего и гармонического развития личности человека делает совершенно необходимой глубокую научную разработку проблемы способности людей к тем или иным видам деятельности. Разработка этой проблемы представляет как теоретический, так и практический интерес».

    Список литературы:

    Адамар Ж. Исследование психологии процесса изобретения в области математики. М., 1970.
    Ананьев Б.Г. Избранные труды: В 2-х томах. М., 1980.
    Голубева Э.А., Гусева Е.П., Пасынкова А.В., Максимова Н.Е., Максименко В.И. Биоэлектрические корреляты памяти и успеваемости у старших школьников. Вопросы психологии, 1974, № 5.
    Голубева Э.А. Способности и индивидуальность. М., 1993.
    Кадыров Б.Р. Уровень активации и некоторые динамические характеристики психической активности.
    Дис. канд. психол. наук. М., 1990.
    Крутецкий В.А. Психология математических способностей школьников. М., 1968.
    Мерлин В.С. Очерк интегрального исследования индивидуальности. М., 1986.
    Печенков В.В. Проблема соотношения общих и специально человеческих типов в.н.д. и их психологических проявлений. В книге "Способности и склонности", М., 1989.
    Пуанкаре А. Математическое творчество. М., 1909.
    Рубинштейн С.Л. Основы общей психологии: В 2-х т. М., 1989.
    Теплов Б.М. Избранные труды: В 2-х томах. М., 1985.


    ДОКЛАД

    НА ТЕМУ:

    «Развитие математических способностей младших школьников при обучении математике»

    Выполнила:

    Сидорова Екатерина Павловна

    МОУ «Бендерская средняя

    общеобразовательная школа №15»

    учитель начальных классов

    г. Бендеры, 2014 г.

    Тема: «Развитие математических способностей младших школьников при обучении математике»

    Глава1:Психолого-педагогические основы формирования математических способностей у младших школьников

    1.1Определение понятия «Математические способности»

    1.3.Обучение математике - основной способ развития математических способностей младших школьников

    Глава2:Методика выявления особенностей формирования математических способностей в процессе решения математических задач

    2.1.опытно-экспериментальная работа по формированию математических способностей у младшего школьника в процессе решения математических задач. Его результаты

    2.2.определение уровня математических способностей у детей младшего школьного возраста

    Введение

    Проблема математических способностей в психологии представляет обширное поле действия для исследователя. В силу противоречий между различными течениями в психологии, а также внутри самих течений, пока не ведется речь о точном и строгом понимании содержания этого понятия. Вместе с тем следует отметить неугасающий интерес к этой проблеме во всех течениях психологии, что делает проблему развития математических способностей актуальной.

    Практическая ценность исследований по этой теме очевидна: математическое образование играет ведущую роль в большинстве образовательных систем, а оно, в свою очередь, станет более эффективным после научного обоснования его основы – теории математических способностей. Как утверждал В. А. Крутецкий: «Задача всестороннего и гармонического развития личности человека делает совершенно необходимой глубокую научную разработку проблемы способности людей к тем или иным видам деятельности. Разработка этой проблемы представляет как теоретический, так и практический интерес» .

    Разработка действенных средств развития математических способностей важна для всех звеньев школы, но особенно актуальна она для системы начального обучения, где закладывается фундамент школьной успеваемости, формируются основные стереотипы учебной деятельности, воспитывается отношение к учебному труду.

    В исследование математических способностей внесли свой вклад такие яркие представители определенных направлений в зарубежной психологии, как А. Бинэ, Э. Трондайк и Г. Ревеш. Изучением влияния социальных факторов на способности ребенка занимались С. Л. Рубинштейн, А.Н.Леонтьев, А. Р. Лурия. Проводили исследования задатков, лежащих в основе способностей А.Г. Ковалева, Мясищева. Общую схему структуры математических способностей в школьном возрасте предложил В. А. Крутецкий.

    Целью работы является развитие математических способностей младших школьников в процессе решения математических задач.

    Объект исследования: учебно-воспитательный процесс в начальных классах, направленный на развитие математических способностей учащихся.

    Предметом исследования являются особенности формирования математических способностей у младших школьников.

    Гипотезой исследования является следующее предположение: в процессе решения математических задач происходит развитие математических способностей у младших школьников если:

    предлагать младшим школьникам для решения эвристические задачи;

    задачи на изучение символов математики и геометрических образов чисел;

    Задачи исследования:

    Выявить содержание понятия математических способностей.

    Изучить опыт эффективной психологической деятельности по развитию математических способностей у младших школьников;

    Выявить содержание понятия математических способностей;

    Учитывать опыт эффективной психологической деятельности по формированию математических способностей у младших школьников;

    Методы исследования:

    Изучение опыта эффективной деятельности психологических служб по формированию математических способностей у младших школьников в процессе решения математических задач.

    Наблюдение за учебной деятельностью младших школьников и процессом решения математических задач.

    Педагогический эксперимент.

    Практическое значение исследования заключается в том, что выявленная система занятий с детьми по развитию математических способностей, которая включает в себя различные типы математических задач, может быть использована психологами, педагогами и родителями в работе с детьми младшего школьного возраста. Предложенные в курсовой работе методики развития математических способностей у детей младшего школьного возраста через решение задач, с использованием приемов конкретизации, абстрагирования, варьирования, аналогии, постановки аналитических вопросов, могут использоваться в работе школьного психолога.

    Глава I . Психолого-педагогические основы формирования математических способностей у младших школьников.

      1. Определение понятия «математические способности»

    Изучение познавательных особенностей, лежащих в основе овладения знаниями, - одно из главных направлений в поисках резервов повышения эффективности школьного обучения.

    Перед современной школой стоят задачи дать общее образование, обеспечить развитие общих способностей и всемерно поддерживать ростки специальных дарований. При этом необходимо учитывать, что обучение и воспитание «оказывают формирующее влияние на умственные возможности подростков не непосредственно, а через внутренние условия - возрастные и индивидуальные».

    Под способностями, по Теплову, понимаются индивидуально-психологические особенности, обуславливающие лёгкость и быстроту приобретения знаний, навыков, которые, однако, и не сводятся к этим особенностям. В качестве природных предпосылок развития способностей рассматриваются анатомо-физиологические особенности мозга и нервной системы типологические свойства нервной системы, соотношение 1 и 2 сигнальных систем, индивидуальные особенности строения анализаторов и специфика межполушарного взаимодействия.

    Один из самых сложных вопросов психологии способностей – вопрос о соотношении врождённого (природного) и приобретённого в способностях. Основным положением в отечественной психологии в этом вопросе является положение о решающем значении социальных факторов в развитии способностей, ведущей роли социального опыта человека, условий его жизни и деятельности. Психологические особенности не могут быть врождёнными. Это целиком и к способностям. Они формируются и развиваются в жизни, в процессе деятельности, в процессе обучения и воспитания.

    А.Н.Леонтьев говорил о необходимости различать у человека два рода способностей природные или естественные (в своей основе биологические, например способность быстрого образования условных связей)и способности специфически человеческие (общественно-исторического происхождения). «Человек наделён от рождения только одной способностью – способностью к формированию специфических человеческих способностей». В дальнейшем речь будет идти только о специфически человеческих способностях.

    Решающую и определяющую роль играют общественный опыт, социальное воздействие, воспитание.

    Принципиальное решение этого вопроса в отечественной психологии таково: врождёнными способности быть не могут, врождёнными могут быть только задатки способностей - некоторые анатомо-физиологические особенности мозга и нервной системы, с которыми человек появляется на свет.

    Природные данные являются одним из важнейших условий сложного процесса формирования и развития способностей. Как отмечал С.Л.Рубинштейн, способности не предопределены, но не могут быть просто насажаны извне. В индивидах должны существовать предпосылки, внутренние условия для развития способностей.

    Но признание реального значения врождённых задатков ни в коем случаи не обозначает признание фатальной обусловленности развитие способностей врождёнными особенностями. Способности не заключены в задатках. В онтогенезе они не проявляются, а формируются.

    Несколько иное понимание задатков даётся в работах А.Г.Ковалёва и В.Н.Мясищева. Под задатками они понимают психофизиологические свойства, в первую очередь те, которые обнаруживаются в самой ранней фазе овладения той или иной деятельностью (например, хорошее цветоразличение, зрительная память). Другими словами, задатки – это первичная природная способность, ещё не развитая, но дающая о себе знать при первых пробах деятельности. Однако, сохраняется основное положение способности в собственном смысле слова формируются, в деятельности, являются прижизненным образованием.

    Когда говорят о задатках способностей, обычно в первую очередь имеют в виду типологические свойства нервной системы. Как известно, типологические свойства – природная основа индивидуальных различий между людьми. На этой основе возникают сложнейшие системы разнообразных временных связей – скорость их образования, их прочность, лёгкость дифференцировок. Они определяют силу сосредоточенного внимания, умственную работоспособность.

    Ряд исследований показал, что наряду с общими типологическими свойствами, характеризующими нервную систему в целом, существуют частные типологические свойства, характеризующие работу отдельных областей коры, выявляемые по отношению к разным анализаторам и разным системам мозга. В отличие от общих типологических свойств, которые определяют темперамент, частные типологические свойства имеют наибольшее значение при изучение специальных способностей.

    А.Г. Ковалёв и В.Н.Мясищев склонны придавать несколько большее значение, чем другие психологи, природной стороне, естественным предпосылкам развития. А.Н.Леонтьев и его последователи склонны в большей степени подчёркивать, роль воспитания в формировании способностей.

    В исследование математических способностей внесли свой вклад и такие яркие представители определённых направлений в психологии, как А.Бинэ, Э.Торндайк и Г.Ревеш, и такие выдающиеся математики, как А.Пуанкаре и Ж.Адамар. Большое разнообразие направлений определяет и большое разнообразие в подходах к исследованию математических способностей. Разумеется, исследование математических способностей следует начинать с определения. Попытки такого рода делались неоднократно, но установившегося, удовлетворяющего всех определения математических способностей не имеется до сих пор. Единственное, в чём сходятся все исследователи, это, пожалуй, мнение о том, что следует различать обычные, «школьные» способности к усвоению математических знаний, к их репродуцированию и самостоятельному применению и творческие математические способности, связанные с самостоятельным созданием оригинального и имеющего общественную ценность продукта.

    Ещё в 1918 году в работе А.Роджерс отмечались две стороны математических способностей, репродуктивная (связанная с функцией памяти) и продуктивная (связанная с функцией мышления). В. Бетц определяет математические способности как способности ясного осознания внутренней связи математических отношений и способность точно мыслить математическими понятиями.

    Из работ отечественных авторов необходимо упомянуть оригинальную статью Д.Мордухай-Болтовского «Психология математического мышления», опубликованную в 1918 мы обсуждали необходимость применения источников до конца прошлого века!

    году. Автор, специалист математик, писал с идеалистической позиции, придавая, например, особо значение «бессознательному мыслительному процессу», утверждая, что «мышление математика глубоко внедряется в бессознательную сферу, то, всплывая на её поверхность, то погружаясь в глубину. Математик не осознает каждого шага своей мысли, как виртуоз движения смычка». Внезапное появление в сознание готового решения какой-либо задачи, которую мы не можем долго решить, -пишет автор, - мы объясняем бессознательным мышлением, которое продолжало заниматься задачей, а результат всплывает за порог сознания. По мнению Мордухай-Болтовского наш ум способен производить кропотливую и сложную работу в подсознании, где и совершается вся «черновая» работа, причём бессознательная работа мысли даже отличается меньшей погрешностью, чем сознательная.

    Автор отмечает совершенно специфический характер математического таланта и математического мышления. Он утверждает, что способность к математике не всегда присуще даже гениальным людям, что между математическим и нематематическим умом есть существенная разница. Большой интерес представляет попытка Мордухай-Болтовского выделить компоненты математических способностей. К таким компонентам он относит в частности:

    *«сильную память», память на «предметы того типа, с которыми имеет дело математика», память скорее не на факты, а на идеи и мысли.

    *«остроумие», под которым понимается способность «обнимать в одном суждении» понятия из двух малосвязанных областей мысли, находить в уже известном сходное с данным, отыскивать сходное в самых отделённых казалось бы, совершенно разнородных предметах.

    * «быстроту мысли» (быстрота мысли объясняется той работой, которую совершает бессознательное мышление в помощь сознательному). Бессознательное мышление, по мнению автора, протекает гораздо быстрее, чем сознательное.

    Д.Мордухай-Болтовский высказывает так же свои соображения по поводу типов математического воображения, которые лежат в основе разных типов математиков – «геометров» и «алгебраистов». Арифметики, алгебраисты и вообще аналитики, у которых открытие производится в самой абстрактной форме прорывных количественных символов и их взаимоотношений, не могут воображать так, как «геометр».

    Советская теория способностей создавалась совместным трудом виднейших отечественных психологов, из которых в первую очередь надо назвать Б.М.Теплова, а так же Л.С.Выготского, А.Н.Леонтьева, С.Л.Рубинштейна и Б.Г.Ананьева.

    Помимо общетеоретических исследований проблемы математических способностей, В.А.Крутецкий своей монографией «Психология математических способностей школьников» положил начало экспериментальному анализу структуры математических способностей.

    Под способностями к изучению математики он понимает индивидуально-психологические особенности (прежде всего особенности умственной деятельности), отвечающие требованиям учебной математической деятельности и обуславливающие при прочих равных условиях успешность творческого овладения математикой как учебным предметом, в частности относительно быстрое, лёгкое и глубокое овладения знаниями, умениями, навыками в области математики. Д.Н.Богоявленский и Н.А.Менчинская, говоря об индивидуальных различиях в обучаемости детей, вводит понятие психологических свойств, определяющих при прочих равных условиях успех в учении. Они не употребляют термина «способности», но по существу соответствующее понятие близко к тому определению, которое дано выше.

    Математические способности - сложное структурное психическое образование, своеобразный синтез свойств, интегральное качество ума, охватывающее разнообразные его стороны и развивающееся в процессе математической деятельности. Указанная совокупность представляет собой единое качественно-своеобразное целое, - только в целях анализа мы выделяем отдельные компоненты, отнюдь не рассматривая их как изолированные свойства. Эти компоненты тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, проявления которой мы условно называем «синдром математической одаренности».

    Исследование математических способностей включает в себя и решение одной из важнейших проблем - поиска природных предпосылок, или задатков, данного вида способностей. К задаткам относятся врожденные анатомо-физиологические особенности индивида, которые рассматриваются как благоприятные условия для развития способностей. Долгое время задатки рассматривались как фактор, фатально предопределяющий уровень и направление развития способностей. Классики отечественной психологии Б. М. Теплов и С.Л. Рубинштейн научно доказали неправомерность такого понимания задатков и показали, что источником развития способностей является тесное взаимодействие внешних и внутренних условий. Выраженность того или иного физиологического качества ни в коей мере не свидетельствует об обязательном развитии конкретного вида способностей. Оно может являться лишь благоприятным условием для этого развития. Типологические свойства, входящие в состав задатков и являющиеся важной их составляющей, отражают такие индивидуальные особенности функционирования организма, как предел работоспособности, скоростные характеристики нервного реагирования, способность перестройки реакции в ответ на изменение внешних воздействий.

    Общая схема структуры математических способностей в школьном возрасте по В. А. Крутецкому. Собранный В. А. Крутецким материал позволил ему выстроить общую схему структуры математических способностей в школьном возрасте:

    Получение математической информации.

    Способность к формализованному восприятию математического материала, схватыванию формальной структуры задачи.

    Переработка математической информации.

    Способность к логическому мышлению в сфере количественных и пространственных отношений, числовой и знаковой символики.

    Способность мыслить математическими символами.

    Способность к быстрому и широкому обобщению математических объектов, отношений и действий.

    Способность к свертыванию процесса математического рассуждения и системы соответствующих действий. Способность мыслить свернутыми структурами.

    Гибкость мыслительных процессов в математической деятельности.

    Стремление к ясности, простоте, экономности и рациональности решений.

    Способность к быстрой и свободной перестройке направленности мыслительного процесса, переключению с прямого на обратный ход мысли (обратимость мыслительного процесса при математическом рассуждении).

    Хранение математической информации.

    Математическая память (обобщенная память на математические отношения, типовые характеристики, схемы рассуждений и доказательств, методы решения задач и принципы подхода к ним).

    Общий синтетический компонент.

    Математическая направленность ума.

    Выделенные компоненты тесно связаны, влияют друг на друга и образуют в своей совокупности единую систему, целостную структуру, своеобразный синдром математической одаренности, математический склад ума.

    Не входят в структуру математической одаренности те компоненты, наличие которых в этой системе не обязательно (хотя и полезно). В этом смысле они являются нейтральными по отношению к математической одаренности. Однако их наличие или отсутствие в структуре (точнее, степень их развития) определяют тип математического склада ума.

    1.2.Условия формирования математических способностей младших школьников в процессе обучения математике.

    Так как целью нашей работы является не просто список рекомендаций, необходимых для успешного овладения детьми математическими знаниями, а разработка рекомендаций к занятиям, целью которых является развитие математических способностей, то остановимся подробней на условиях формирования собственно математических способностей. Как уже отмечалось, способности формируются и развиваются только в деятельности. Однако, для того, чтобы деятельность положительно влияла на способности, она должна удовлетворять некоторым условиям.

    Во-первых, деятельность должна вызывать у ребенка сильные и устойчивые положительные эмоции, удовольствие. Ребенок должен испытывать чувство радостного удовлетворения от деятельности, тогда у него возникает стремление по собственной инициативе, без принуждений заниматься ею. Живая заинтересованность, желание выполнить работу возможно лучше, а не формальное, равнодушное, безразличное отношение к ней необходимые условия того, чтобы деятельность положительно влияла на развитие способностей.Если ребенок предполагает, что ему не справиться с задачей, он стремится ее обойти, формируется негативное отношение к заданию и к предмету вообще. Чтобы этого избежать, учитель должен создавать для ребенка “ситуацию успеха”, должен замечать и одобрять любые достижения ученика, повышать его самооценку. Это особенно касается математики, так как этот предмет большинству детей дается нелегко.

    Поскольку способности могут принести плоды лишь в том случае, когда они сочетаются с глубоким интересом и устойчивой склонностью к соответствующей деятельности, учителю надо активно развивать интересы детей, стремясь к тому, чтобы эти интересы не носили поверхностного характера, а были серьезными, глубокими, устойчивыми и действенными.

    Во-вторых, деятельность ребенка должна быть по возможности творческой. Творчество детей при занятиях математикой может проявляться в необычном, нестандартном решении задачи, в раскрытии детьми способов и приемов вычислений. Для этого учитель должен ставить перед детьми посильные проблемы и добиваться того, чтобы дети с помощью наводящих вопросов самостоятельно решали их.

    В-третьих, важно организовать деятельность ребенка так, чтобы он преследовал цели, всегда немного превосходящие его наличные возможности, уже достигнутый им уровень выполнения деятельности. Здесь мы можем говорить об ориентировании на “зону ближайшего развития” учащегося. Но чтобы соблюсти это условие, необходим индивидуальный подход к каждому ученику.

    Таким образом, исследуя структуру способностей вообще и математических способностей в частности, а также возрастные и индивидуально характерологические особенности детей младшего школьного возраста, можем сделать следующие выводы:

    В психологической науке еще не выработано единого взгляда на проблему способностей, их структуры, происхождения и развития.

    Если под математическими способностями подразумевать все индивидуально-психологические особенности человека, способствующие успешному овладению математической деятельностью, то нужно вычленить такие группы способностей: самые общие способности (условия), необходимые для успешного осуществления любой деятельности:

    трудолюбие;

    настойчивость;

    работоспособность;

    кроме того, хорошо развитые произвольная память и произвольное внимание, интерес и склонность заниматься данной деятельностью;

    общие элементы математических способностей, те общие особенности мыслительной деятельности, которые необходимы для очень широкого круга деятельности;

    специфические элементы математических способностей  особенности умственной деятельности, которые свойственны только математику, специфичные именно для математической деятельности в отличие от всех других.

    Математические способности -это сложное, интегрированное образование, основными компонентами которого являются:

    Способность к формализации математического материала;

    Способность к обобщению математического материала;

    Способность к логическому рассуждению;

    Способность к обратимости мыслительного процесса;

    Гибкость мышления;

    Математическая память;

    Стремление к экономии умственных сил.

    Компоненты математических способностей в младшем школьном возрасте представлены лишь в своем “зародышевом” состоянии. Однако в процессе школьного обучения происходит заметное их развитие, младший же школьный возраст является наиболее плодотворным для этого развития.

    Существуют так же и природные предпосылки развития математических способностей, к коим надо отнести:

    Высокий уровень общего интеллекта;

    Преобладание вербального интеллекта над невербальным;

    Высокая степень развития словесно-логических функций;

    Сильный тип нервной системы;

    Некоторые личностные особенности, такие как разумность, рассудительность, упорство, независимость, самостоятельность.

    При разработке занятий по развитию математических способностей следует учитывать не только возрастные и индивидуально типологические особенности детей, но и соблюдать определенные условия, чтобы это развитие было максимально возможным:

    Деятельность должна вызывать у ребенка сильные и устойчивые положительные эмоции;

    Деятельность должна быть по возможности творческой;

    Деятельность должна быть ориентирована на “зону ближайшего развития” ученика.

    1.3 Обучение математике - основной способ развития математических способностей младших школьников

    Одной из важнейших теоретических и практических проблем современной педагогики является совершенствование процесса обучения младших школьников. История развития зарубежной и российской педагогики и психологии неразрывно связана с изучением различных аспектов затруднений в обучении. По данным многих авторов (Н. П. Вайзман, Г. Ф. Кумарина, С. Г. Шевченко и др.), число детей, которые уже в начальных классах оказываются не в состоянии за отведенное время и в необходимом объеме усвоить программу, колеблется от 20% до 30% от общего числа учащихся. Являясь умственно сохранными, не имея классических форм аномалий развития, такие дети испытывают трудности в социальной и школьной адаптации, проявляя неуспешность в обучении .

    Затруднения, возникающие у младших школьников в процессе обучения, можно объединить в три группы: биогенные, социогенные и психогенные, что обусловливает ослабление познавательных способностей (внимания, восприятия, памяти, мышления, воображения, речи) ребенка и значительно снижает эффективность обучения. Помимо общих предпосылок трудностей в учении существуют специфические – трудности усвоения математического материала.

    Проблеме обучения элементарному курсу математики посвящен ряд исследований современных авторов (Н. Б. Истомина, Н. П. Локалова, А. Р. Лурия, Г. Ф. Кумарина, Н. А. Менчинская, Л. С. Цветкова и др.). В результате анализа названных литературных источников и в ходе собственных исследований были выявлены следующие основные затруднения младших школьников при обучении математике:

    Отсутствие устойчивых навыков счета.

    Незнание отношений между смежными числами.

    Неспособность перехода из конкретного плана в абстрактный.

    Нестабильность графических форм, т.е. несформированность понятия "рабочая строка", зеркальное написание цифр.

    Неумение решать арифметические задачи.

    Интеллектуальная пассивность” .

    На основании анализа психологических и психофизических причин, лежащих в основе этих трудностей, можно выделить следующие группы:

    1 группа – трудности, связанные с недостаточностью операций абстрагирования, что проявляется при переходе из конкретного в абстрактный план действий. В связи с этим возникают трудности при усвоении числового ряда и его свойств, смысла счетного действия.

    2 группа – трудности, связанные с недостаточным развитием мелкой моторики, несформированностью зрительно-моторных координаций. Эти причины лежат в основе таких затруднений учащихся, как овладение написанием цифр, зеркальное их изображение.

    3группа – трудности, связанные с недостаточным развитием ассоциативных связей и пространственной ориентацией. Эти причины лежат в основе таких затруднений учащихся, как трудности при переводе из одной формы (словесной) в другую (цифровую), при определении геометрических линий и фигур, затруднений в счете, при выполнении счетных операций с переходом через десяток.

    4 группа – трудности, связанные с недостаточным развитием мыслительной деятельности и индивидуально-психологическими особенностями личности учащихся. В связи с этим младшие школьники испытывают трудности в формировании правил на основе анализа нескольких примеров, трудности в процессе формирования умения рассуждать при решении задач. В основе этих затруднений лежит недостаточность такой мыслительной операции, как обобщение.

    5 группа – трудности, связанные с несформированностью познавательного отношения к действительности, что характеризуется “интеллектуальной пассивностью”. Учебную задачу дети воспринимают лишь тогда, когда она переведена в практический план. При необходимости решать интеллектуальные задачи у них появляется стремление использовать различные обходные пути (заучивание без запоминания, угадывание, стремление действовать по образцу, использовать подсказки).

    Немаловажное значение при обучении учащихся имеет мотивация предстоящей деятельности. Для младшего школьника первостепенной задачей при организации мотивации является преодоление страха перед трудной, абстрактной, непонятной математической информацией, пробуждение уверенности в возможности ее усвоения и интереса к обучению.

    Учителю необходимо в каждом конкретном случае профессионально подходить к построению и реализации учебного процесса, ориентируясь на личностный рост ребенка, учитывая индивидуальные особенности его психической деятельности, создавая позитивные перспективы развития личности ученика, организовывая личностно-ориентированную образовательную среду, позволяющую на практике выявлять и реализовывать творческий потенциал ребенка. Опираясь на теоретические знания, учитель должен уметь предвидеть затруднения ребенка в обучении и устранять их; планировать коррекционно-развивающую работу, создавать проблемные ситуации для активизации динамики развития познавательных процессов; организовывать продуктивную самостоятельную работу, создавать благоприятный эмоционально-психологический фон процесса обучения. Особенность методических знаний и умений заключается в том, что они тесно связаны с психологическими, педагогическими и математическими знаниями.

    Зависимость одних математических знаний и умений от других, их последовательность и логичность показывают, что пробелы на той или иной ступени задерживают дальнейшее изучение математики и являются причиной школьных трудностей. Решающую роль в предупреждении школьных трудностей играет диагностика математических знаний и умений учащихся. При организации, и проведении которой необходимо соблюдать определенные условия: формулировать вопросы четко и конкретно; предоставлять время для обдумывания ответа; относиться к ответам ученика позитивно.

    Рассмотрим типичную ситуацию, которая часто имеет место на практике. Ученику предложено задание: “Вставь пропущенное число так, чтобы неравенство было верным 5> ? ”. Задание школьник выполнил неверно: 5 > 9. Как поступить учителю? Обратиться к другому ученику или попытаться разобраться в причинах допущенной ошибки?

    Выбор действий учителя в этом случае может быть обусловлен рядом психолого-педагогических причин: индивидуальными особенностями ученика, уровнем его математической подготовки, целью с которой предлагалось задание, и др. Предположим, был выбран второй путь, т.е. решили выявить причины ошибки.

    Прежде всего, необходимо предложить ученику прочитать выполненную запись.

    Если школьник читает ее, как “пять меньше девяти”, значит ошибка в том, что не усвоен математический символ. Для устранения ошибки необходимо учитывать особенности восприятия младшего школьника. Так как оно имеет наглядно-образный характер, то необходимо использовать прием сравнения знака с конкретным образом, например, с клювиком, который раскрыт к большему числу и закрыт к меньшему.

    Если ученик читает запись, как “пять больше девяти”, значит ошибка в том, что не усвоено какое-то из математических понятий: отношение “больше”, “меньше”; установление взаимно-однозначного соответствия; количественное число; натуральный ряд чисел; счет. Учитывая наглядно-образный характер мышления ребенка, необходимо организовать работу над данными понятиями с применением практических заданий.

    Учитель предлагает одному ученику выложить на парте 5 треугольников, а другому – 9 и подумать, как можно расположить их, чтобы выяснить, у кого больше или меньше треугольников.

    Опираясь на свой жизненный опыт, ребенок может самостоятельно предложить способ действий или найти его с помощью учителя, т.е. установить взаимно-однозначное соответствие между элементами данных предметных множеств (треугольников):

    Если ученик успешно справился с выполнением заданий на сравнение чисел, то необходимо установить, насколько осознаны его действия. Здесь учителю понадобится знание таких математических понятий, как “счет” и “натуральный ряд чисел”, так как именно они лежат в основе обоснования: “Число, которое называют при счете раньше, всегда меньше любого числа, следующего за ним”.

    Практическая деятельность педагога требует целого комплекса знаний по психологии, педагогике и математике. С одной стороны, знания должны быть синтезированы и объединены вокруг определенной практической проблемы, имеющей многосторонний целостный характер. С другой стороны, они должны быть переведены на язык практических действий, практических ситуаций, то есть должны стать средством решения реальных практических задач.

    При обучении математике младших школьников педагог должен уметь создавать проблемные ситуации для развития познавательных процессов; организовывать продуктивную самостоятельную работу, создавать благоприятный эмоционально-психологический фон процесса обучения.

    В психолого-педагогических исследованиях, посвященных проблемам обучения математике, отмечаются трудности, которые испытывают учащиеся младших классов общеобразовательной школы в овладении умением решать арифметические задачи. Вместе с тем решение арифметических задач имеет большое значение для развития познавательной деятельности учащихся, т.к. способствует развитию логического мышления.

    Г.М. Капустина отмечает, что дети с трудностями в обучении на разных этапах работы над задачей испытывают затруднения: при чтении условия, в анализе предметно-действенной ситуации, в установлении связей между величинами, в формулировке ответа. Они часто действуют импульсивно, необдуманно, не могут охватить многообразия зависимостей, составляющих математическое содержание задачи. Вместе с тем решение арифметических задач имеет большое значение для развития познавательной деятельности учащихся, т.к. способствует развитию их словесно-логического мышления и произвольности деятельности. В процессе решения арифметических задач дети учатся планировать и контролировать свою деятельность, овладевают приемами самоконтроля, у них воспитывается настойчивость, воля, развивается интерес к математике.

    В своих исследованиях М. Н. Перова предложила следующую классификацию ошибок, которые учащиеся допускают при решении задач:

    1. Привнесение лишнего вопроса и действия.

    2. Исключение нужного вопроса и действия.

    3. Несоответствие вопросов действиям: правильно поставленные вопросы и неправильный выбор действий или, наоборот, правильный выбор действий и неверная формулировка вопросов.

    4. Случайный подбор чисел и действий.

    5. Ошибки в наименовании величин при выполнении действий: а) наименования не пишутся; б) наименования пишутся ошибочно, вне предметного понимания содержания задачи; в) наименования пишутся лишь при отдельных компонентах.

    6. Ошибки в вычислениях.

    7. Неверная формулировка ответа задачи (сформулированный ответ не соответствует вопросу задачи, стилистически построен неверно и т.д.).

    При решении задач у младших школьников развивается произвольное внимание, наблюдательность, логическое мышление, речь, сообразительность. Решение задач способствует развитию таких процессов познавательной деятельности, как анализ, синтез, сравнение, обобщение. Решение арифметических задач помогает раскрыть основной смысл арифметических действий, конкретизировать их, связать с определенной жизненной ситуацией. Задачи способствуют усвоению математических понятий, отношений, закономерностей. В этом случае они, как правило, служат конкретизации этих понятий и отношений, так как каждая сюжетная задача отражает определенную жизненную ситуацию.

    Глава II . Методика выявления особенностей формирования математических способностей в процессе решения математических задач.

    2.1.Опытно-экспериментальная работа по формированию математических способностей у младшего школьника в процессе решения математических задач.

    С целью практического обоснования выводов, полученных в ходе теоретического изучения проблемы: каковы наиболее эффективные формы и методы, направленные на развитие математических способностей школьников в процессе решения математических задач было проведено исследование. В эксперименте приняли участие два класса: экспериментальный 2 (4) «Б», контрольный – 2 (4) «В» УВК «Школа-гимназия»№1 п.г.т. Советский.

    Этапы экспериментальной деятельности

    I – Подготовительный. Цель: определение уровня математических способнос-тей по результатам наблюдений.

    II – Констатирующий этап эксперимента. Цель: определение уровня сформированности математических способностей.

    III – Формирующий эксперимент. Цель: создание необходимых условий для развития математических способностей.

    IV – Контрольный эксперимент.Цель: определение эффективности форм и методов, способствующих развитию математических способностей.

    На подготовительном этапе проведены наблюдения за учащимися контрольного – 2 «Б» и экспериментального 2 «В» классов. Наблюдения проводились как в процессе изучения нового материала, так и при решении задач. Для наблюдений были выделены те признаки математических способностей, которые наиболее ярко прявляются у младших школьников:

    1) относительно быстрое и успешное овладение математическими знаниями, умениями и навыками;

    2) способность к последовательному правильному логическому рассуждению;

    3) находчивость и сообразительность при изучении математики;

    4) гибкость мышления;

    5) способность к оперированию числовой и знаковой символикой;

    6) пониженная утомляемость при занятиях математикой;

    7) способность сокращать процесс рассуждения, мыслить свернутыми структурами;

    8) способность переходить с прямого на обратный ход мысли;

    9) развитость образно–геометрического мышления и пространственных представлений.

    В ноябре 2011 г. мы заполнили таблицу математических способностей школьников, в которой оценили в баллах каждое из перечисленных качеств (0-низкий уровень, 1-средний уровень, 2-высокий уровень).

    На втором этапе в экспериментальном и контрольном классах проведена диагностика развития математических способностей.

    Для этого использовался тест «Решение задач»:

    1. Составь из данных простых задач составные. Реши одну составную задачу разными способами, подчеркни рациональный.

    Корова кота Матроскина в понедельник дала 12 литров молока. Молоко разлили в трёхлитровые банки. Сколько банок получилось у кота Матроскина?

    Коля купил 3 ручки по 20 рублей каждая. Сколько денег он заплатил?

    Коля купил 5 карандашей по цене 20 рублей. Сколько стоят карандаши?

    Корова кота Матроскина во вторник дала 15 литров молока. Это молоко разлили в трёхлитровые банки. Сколько банок получилось у кота Матроскина?

    2. Прочитай задачу. Прочитай вопросы и выражения. Соедини каждый вопрос с нужным выражением.

    а + 18

    классе 18 мальчиков и а девочек.

    Сколько всего учеников в классе?

    18 - а

    На сколько мальчиков больше, чем девочек?

    а - 18

    На сколько девочек меньше, чем мальчиков?

    3. Реши задачу.

    В своём письме родителям Дядя Фёдор написал, что его дом, дом почтальона Печкина и колодец находятся на одной стороне улицы. От дома Дяди Фёдора до дома почтальона Печкина 90 метров, а от колодца до дома Дяди Фёдора 20 метров. Какое расстояние от колодца до дома почтальона Печкина?

    С помощью теста проверялись те же компоненты структуры математических способностей, что и при наблюдении.

    Цель: установить уровень математических способностей.

    Оборудование: карточка ученика (лист).

    Тест проверяет умения и математические способности:

    Умения, необходимые для решения задачи.

    Способности, проявляющиеся в математической деятельности.

    Умение отличать задачу от других текстов.

    Способность к формализации математического материала.

    Умение записывать решение задачи, производить вычисления.

    Способность к оперированию числовой и знаковой символикой.

    Умение записывать решение задачи выражением. Умение решать задачу разными способами.

    Гибкость мышления, способность сокращать процесс рассуждения.

    Умение выполнять построение гео-метрических фигур.

    Развитость образно–геометри-ческого мышления и прост-ранственных представлений.

    На данном этапе изучены математические способности и определены следующие уровни:

    Низкий уровень: математические способности проявляются в общей, всем присущей потребности.

    Средний уровень: способности появляются в сходных условиях (по образцу).

    Высокий уровень: творческое проявление математических способностей в новых, неожиданных ситуациях.

    Качественный анализ теста показал основные причины затруднения выполнения теста. Среди них: а) отсутствие конкретных знаний в решении задач (не могут определить, во сколько действий решается задача, не могут записать решение задачи выражением (во 2 «Б» (экспериментальном) классе 4 человека - 15%, во 2 «В» классе - 3 человека - 12%) б) недостаточное формирование вычислительных навыков (во 2 «Б» классе 7 человек – 27%, во 2 «В» классе 8 человек – 31%.Развитие математических способностей учащихся обеспечивается, в первую очередь, развитием математического стиля мышления. Для определения различий в развитии у детей способности рассуждать было проведено групповое занятие на материале диагностического задания «разное-одинаковое» по методике А.З. Зака. Выявлены следующие уровни способности к рассуждению:

    высокий уровень – решены задачи № 1-10 (содержат 3-5 персонажей)

    средний уровень – решены задачи № 1-8 (содержат 3-4 персонажа)

    низкий уровень – решены задачи № 1 - 4 (содержат 3 персонажа)

    В эксперименте применялись такие методы работы: объяснительно-иллюстративный, репродуктивный, эвристический, проблемного изложения, исследовательский метод. В настоящем научном творчестве постановка проблемы идёт через проблемную ситуацию. Мы стремились к тому, чтобы ученик самостоятельно научился видеть проблему, формулировать её, исследовать возможности и способы её решения. Исследовательский метод характеризуется самым высоким уровнем познавательной самостоятельности учащихся. На уроках мы организовывали самос-тоятельную работу учащихся, давая им проблемные познавательные задачи и задания, имеющие практический характер.

    2.2. Определение уровня математических способностей у детей младшего школьного возраста.

    Таким образом, поведённое нами исследование, позволяет утверждать, что работа над развитием математических способностей в процессе решения текстовых задач дело важное и необходимое. Поиск новых путей по развитию математических способностей является одной из неотложных задач современной психологии и педагогики.

    Проведённое нами исследование имеет определённое практическое значение.

    В ходе опытно-экспериментальной работы по результатам наблюдений и анализу полученных данных можно сделать вывод о том, что скорость и успешность развития математических способностей не зависит от скорости и качества усвоения программных знаний, умений и навыков. Нам удалось достичь основной цели данного исследования – определить наиболее эффектив-ные формы и методы, способствующие развитию математических способностей учащихся в процессе решения текстовых задач.

    Как показывает анализ исследовательской деятельности, развитие математических способностей детей развивается более интенсивно, так как:

    а) создано соответствующее методическое обеспечение (таблицы, инструкционные карточки и листы заданий для учащихся с разным уровнем математических способностей, пакет программированного обеспечения, серии задач и упражнений для развития определённых компонентов математических способностей;

    б) создана программа факультативного курса « Нестандартные и занимательные задачи», которая предусматривает реализацию развития математических способностей учащихся;

    в) разработан диагностический материал, который позволяет своевременно определять уровень развития математических способностей и корректировать организацию учебной деятельности;

    г) разработана система развития математических способностей (согласно плану формирующего эксперимента).

    Необходимость использования комплекса упражнений для развития математических способностей определяется на основе выявленных противоречий:

    Между необходимостью использования заданий разных уровней сложности на уроках математики и отсутствием их в обучении;

    Между необходимостью развития математических способностей у детей и реальными условиями их развития;

    Между высокими требованиями к задачам формирования творческой личности учащихся и слабым развитием математических способностей школьников;

    Между признанием приоритета введения системы форм и методов работы для развития математических способностей и недостаточным уровнем разработки путей реализации этого подхода.

    Основой для исследования является выбор, изучение, реализация наиболее эффективных форм, методов работы в развитии математических способностей.

    Заключение

    Подводя итог, следует отметить, что рассматриваемая нами тема является актуальной для современной школы. Для профилактики и устранения трудностей в обучении математике младших школьников учитель должен: знать психолого-педагогические особенности младшего школьника; уметь организовывать и проводить профилактическую и диагностическую работу; создавать проблемные ситуации и создавать благоприятный эмоционально-психологический фон процесса обучения математике младших школьников.

    В связи с проблемой формирования и развития способностей следует указать, что целый ряд исследований психологов направлен на выявление структуры способностей дошкольников к различным видам деятельности. При этом под способностями понимается комплекс индивидуально – психологических особенностей человека, отвечающих требованиям данной деятельности и являющиеся условием успешного выполнения. Таким образом, способности – сложное, интегральное, психическое образование, своеобразный синтез свойств, или как их называют компонентов.

    Общий закон образования способностей состоит в том, что они формируются в процессе овладения и выполнения тех видов деятельности, для которых они необходимы.

    Способности не есть нечто раз и навсегда предопределённое, они формируются и развиваются в процессе обучения, в процессе упражнения, овладения соответствующей деятельностью, поэтому нужно формировать, развивать, воспитывать, совершенствовать способности детей и нельзя заранее точно предвидеть, как далеко может пойти это развитие.

    Говоря о математических способностях как особенностях умственной деятельности, следует, прежде всего, указать на несколько распространенных среди педагогов заблуждений.

    Во-первых, многие считают, что математические способности заключаются, прежде всего, в способности к быстрому и точному вычислению (в частности в уме). На самом деле вычислительные способности далеко не всегда связаны с формированием подлинно математических (творческих) способностей. Во-вторых, многие думают, что способные к математике дошкольники отличаются хорошей памятью на формулы, цифры, числа. Однако, как указывает академик А. Н. Колмогоров, успех в математике меньше всего основан на способности быстро и прочно запоминать большое количество фактов, цифр, формул. Наконец, считают, что одним из показателей математических способностей является быстрота мыслительных процессов. Особенно быстрый темп работы сам по себе не имеет отношения к математических способностям. Ребенок может работать медленно и неторопливо, но в то же время вдумчиво, творчески, успешно продвигаясь в усвоении математики.

    Крутецкий В.А. в книге «Психология математических способностей дошкольников» различает девять способностей (компонентов математических способностей):

    1) Способность к формализации математического материала, к отделению формы от содержания, абстрагированию от конкретных количественных отношений и пространственных форм и оперированию формальными структурами, структурами отношений и связей;

    2) Способность обобщать математический материал, вычленять главное, отвлекаясь от несущественного, видеть общее во внешне различном;

    3) Способность к оперированию числовой и знаковой символикой;

    4) Способность к «последовательному, правильно расчленённому логическому рассуждению», связанному с потребностью в доказательствах, обосновании, выводах;

    5) Способность сокращать процесс рассуждения, мыслить свернутыми структурами;

    6) Способность к обратимости мыслительного процесса (к переходу с прямого на обратный ход мысли);

    7) Гибкость мышления, способность к переключению от одной умственной операции к другой, свобода от сковывающего влияния шаблонов и трафаретов;

    8) Математическая память. Можно предположить, что её характерные особенности также вытекают из особенностей математической науки, что это память на обобщения, формализованные структуры, логические схемы;

    9) Способность к пространственным представлениям, которая прямым образом связана с наличием такой отрасли математики как геометрия.

    Список литературы

    1. Аристова, Л Активность учения школьника [Текст] / Л. Аристова. – М: Просвещение, 1968.

    2. Балк, М.Б. Математика после уроков [Текст]: пособие для учителей / М.Б. Балк, Г.Д. Балк. – М: Просвещение, 1671. – 462с.

    3. Виноградова, М.Д. Коллективная познавательная деятельность и воспитание школьников [Текст] / М.Д. Виноградова, И.Б. Первин. – М: Просвещение, 1977.

    4. Водзинский, Д.И. Воспитание интереса к знаниям у подростков [Текст] / Д.И. Водзинский. – М: Учпедгиз, 1963. – 183с.

    5. Ганичев, Ю. Интеллектуальные игры: вопросы их классификации и разработки [Текст] // Воспитание школьника, 2002. - №2.

    6. Гельфанд, М.Б. Внеклассная работа по математике в восьмилетней школе [Текс] / М.Б. Гельфанд. – М: Просвещение, 1962. – 208с.

    7. Горностаев, П.В. Играть или учится на уроке [Текст] // Математика в школе, 1999. – №1.

    8. Доморяд, А.П. Математические игры и развлечения [Текст] / А.П. Доморяд. – М: Гос. издание Физико-математической литературы, 1961. – 267с.

    9.Дышинский, Е.А. Игротека математического кружка [Текст] / Е.А. Дышинский. – 1972.-142с.

    10. Игра в педагогическом процессе [Текст] - Новосибирс, 1989.

    11. Игры – обучение, тренинг, досуг [Текст] / под ред. В.В. Перусинского. – М: Новая школа, 1994. - 368с.

    12. Калинин, Д. Математический кружок. Новые игровые технологии [Текст] // Математика. Приложение к газете «Первое сентября», 2001. - №28.

    13. Коваленко, В.Г. Дидактические игры на уроках математики [Текст]: книга для учителя / В.Г. Коваленко. – М: Просвещение, 1990. – 96с.

    14.Кордемский, Б.А. Увлечь школьника математикой [Текст]: материал для классных и внеклассных занятий / Б.А.Кордемский. - М: Просвещение, 1981. – 112с.

    15.Кулько, В.Н. Формирование у учащихся умения учиться [Текст] / В.Н. Кулько, Г.Ц. Цехмистрова. – М: Просвещение, 1983.

    16.Ленивенко, И.П. К проблемам организации внеклассной работы в 6-7 классах [Текст] // Математика в школе, 1993. - №4.

    17.Макаренко, А.С. О воспитании в семье [Текст] / А.С.Макаренко. – М: Учпедгиз, 1955.

    18.Метнльский, Н.В. Дидактика математики: общая методика и ее проблемы [Текст] / Н.В. Метельский. – Минск: Издательсто БГУ, 1982. – 308с.

    19.Минский, Е.М. От игры к знаниям [Текст] / Е.М. Минский. – М: Просвещение, 1979.

    20.Морозова, Н.Г. Учителю о познавательном интересе [Текст] / Н.Г. Морозова. – М: Просвещение, 1979. – 95с.

    21.Пахутина, Г.М. Игра как форма организации обучения [текст] / Г.М. Пахутина. – Арзамас,2002.

    22.Петрова, Е.С. Теория и методика обучения математике [Текст]: Учебно-методическое пособие для студентов математических специальностей / Е.С. Петрова. – Саратов: Издательство саратовского университета, 2004. – 84с.

    23Самойлик, Г. Развивающие игры [Текст] // Математика. Приложение к газете «Первое сентября», 2002. - №24.

    24.Сиденко, А. Игровой подход в обучении [Текст] // Народное образование, 2000. - №8.

    25Степанов, В.Д. Активизация внеурочной работы по математике в средней школе [Текст]: книга для учителя / В.Д. Степанов. – М: Просвещение, 1991. – 80с.

    26Талызина, Н.Ф. Формирование познавательной деятельности учащихся [Текст] / Н.Ф. Талызина. – М: Знания, 1983. – 96с.

    27Технология игровой деятельности [Текст]: учебное пособие / Л.А. Байкова, Л.К. Теренкина, О.В. Еремкина. – Рязань: Издательство РГПУ, 1994. – 120с.

    28Факультативные занятия по математике в школе [Текст] / сост. М.Г. Лускина, В.И.Зубарева. - К: ВГГУ, 1995. – 38с

    29Эльконин Д.Б. психология игры [текст] / Д.Б. Эльконин. М: Педагогика, 1978

    Если математика не ваш конек, и дается она вам не без труда, прочтите эту статью до конца, и вы узнаете, как улучшить свои математические навыки и добиться успехов в изучении этого непростого предмета.

    Шаги

      Просите о помощи.

      • Во время урока просите объяснить вам значение того или иного понятия. Если ответ все-таки не проливает свет на все темные пятна, останьтесь после урока и поговорите с учителем еще раз. Может быть, в беседе один на один он объяснит вам материал поподробнее и больше того, что уместилось в урочное время.
    1. Удостоверьтесь, что понимаете значение всех слов. Математика, если говорить о задачах более высокого уровня, представляет собой, как правило, набор простых операций. Например, при умножении используется сложение, а при делении не обойтись без вычитания. До того, как вы усвоите какое-либо понятие, вам необходимо разобраться в том, какие математические операции оно в себя включает. С каждым математическим термином (например, «переменная») поступайте так:

      • Выучите определение в учебнике: «Символ для неизвестного нам числа, как правило, обозначается буквами, например, x или y.»
      • Упражняйтесь в решении примеров по теме. Например, "4x - 7 = 5," где x – неизвестная переменная, а 4, 7 и 5 – «константы» (определение для этого понятия тоже нужно посмотреть в учебнике).
    2. Уделяйте особое внимание изучению математических правил. Свойства, формулы, уравнения и методы решения задач – все это основные инструменты математической науки. Научитесь полагаться на них так же, как хороший плотник полагается на свои пилу, рулетку, молоток и т. д.

      Принимайте активное участие в классной работе. Если не знаете ответа на вопрос, попросите объяснения. Расскажите учителю, что именно вы уже поняли, чтобы он смог уделить больше внимания тем моментам, которые вызвали у вас затруднение.

      • Рассмотрим ситуацию на примере упомянутой выше задачи с переменной. Скажите учителю так: «Я понимаю, что если умножить на 4 неизвестную переменную (x), отнять 7, то получится 5. С чего мне начать решение?» Теперь учитель будет знать, что именно вызывает у вас трудность и как вовлечь вас в решение задания. А вот если бы вы сказали просто: «Я не понимаю», - учитель мог бы подумать, что ему нужно прежде всего объяснить вам, что такое переменная и константа.
      • Никогда не бойтесь задавать вопросы. Даже Эйнштейн задавал вопросы (а потом сам же и отвечал на них)! Решение не придет к вам само собой, если вы будете бездействовать. Не хотите спрашивать учителя, тогда попросите помощи у соседа по парте или приятеля.
    3. Ищите помощь извне. Если все-таки вам еще нужна помощь, а учитель не может объяснить вам материал так, чтобы вы поняли, попросите порекомендовать вам кого-нибудь для более обстоятельных занятий. Узнайте, может быть, есть какие-нибудь специальные курсы или репетиторские программы, или попросите учителя позаниматься с вами до или после школьных занятий.

      • Наряду с различными способами изучения материала (аудио-, визуальное восприятие и т.д.) существуют и различные подходы в преподавании. Если вы лучше всего воспринимаете информацию визуально, а ваш учитель, пусть и самый лучший в мире, ориентируется в процессе обучения на тех, кто хорошо воспринимает информацию на слух, то вам будет тяжело заниматься с таким педагогом. Поэтому было бы полезно получить дополнительную помощь от тех, кто обучает таким методом, какой удобнее именно для вас.
    4. Записывайте каждое действие в решении. Например, при решении уравнений разделите свое решение на отдельные действия и запишите все, что вы сделали прежде, чем перейти к следующему действию.

      • Подробная запись поможет проследить путь решения и найти ошибки.
      • Пошаговое письменное решение покажет вам, где именно вы ошиблись.
      • Записывая каждое действие в математическом решении, вы еще раз повторите и лучше запомните то, что уже знали.
    5. Старайтесь решать все задания, которые вам были заданы. После нескольких примеров вы набьете руку. Если задания все еще даются с трудом, то вы поймете, где именно у вас возникают сложности.

    6. Просмотрите свои уже проверенные учителем задания. Изучите его пометки и исправления и разберите свои ошибки. Если не все понятно, попросите учителя разобраться вместе.

      • Не стесняйтесь просить о помощи, учитесь на своих ошибках!
      • Даже если математика для вас трудновата, не бойтесь ее. Волнение только все усложняет. Вместо этого наберитесь терпения и постепенно, шаг за шагом изучайте ее.
      • Не забывайте делать домашнее задание! Можете даже составлять свои собственные примеры и задачи, чтобы потренироваться.
      • Не сидите сложа руки из-за страха ошибиться. Пытайтесь что-нибудь решить, даже если не до конца уверены в правильности вашего решения.
      • Спрашивайте, если не понимаете. Попросите учителя объяснить то, что вам непонятно, во время урока или после. Не позволяйте страху бежать впереди паровоза. Не теряйте веры в себя и не обращайте внимания на других.
      • Когда арифметика останется позади, и вы будешь изучать алгебру и геометрию, знайте, что все то новое, что вы будете проходить в этих разделах математики, будет основано на уже изученном ранее материале. Так что убедитесь, что хорошо усвоили каждый свой урок прежде, чем двигаться дальше.
      • Вам будет гораздо проще, если вы будете показывать учителю свою работу.
      • Всегда обращайтесь за помощью к учителю, если что-то не понимаете.
      • Старайтесь понимать все, что вы делаете, а не просто бездумно решайте схожие задания одинаковым способом. Скажем, если вы учитесь складывать большие числа, то подумайте, почему число, обозначающее десятки, нужно прибавлять к сумме в следующем столбце. А если все-таки еще не понимаете, то спросите.
      • Нравится нам это или нет, но умение быстро и правильно считать играет важную роль и в нашей деловой, и в личной жизни.
      • Получайте удовольствие. Ведь даже если пока вам это и не очень-то интересно, тем не менее, математика может быть воистину прекрасна в своей элегантной упорядоченности.
      • Занимайтесь математикой не менее получаса в день.

      Предупреждения

      • Не старайтесь запомнить разобранные примеры наизусть. Наоборот, настаивайте, чтобы учитель объяснил их вам, и убедитесь в том, что вы понимаете, что он говорит. Каждый пример имеет свое решение, и главное – понять, почему их нужно решать именно так. Кроме того, не заучивайте неправильные формулы.