Заболевания, эндокринологи. МРТ
Поиск по сайту

Причины антибиотикорезистентности и методы борьбы с ними. Международный студенческий научный вестник. Бактерии как оружие

Антибиотики – одно из величайших достижений медицинской науки, ежегодно спасающее жизни десятков и сотен тысяч человек. Однако, как говорит народная мудрость, и на старуху бывает проруха. То, что раньше убивало патогенных микроорганизмов, сегодня уже не работает так, как раньше. Так в чем же причина: противомикробные препараты стали хуже или всему виной антибиотикорезистентность?

Определение антибиотикорезистентности

Антимикробные препараты (АПМ), которые принято называть антибиотиками, изначально были созданы для борьбы с бактериальной инфекцией. А в связи с тем, что различные болезни может вызывать не одна, а несколько разновидностей бактерий, объединенных в группы, то изначально велась разработка препаратов, эффективных в отношении определенной группы инфекционных возбудителей.

Но бактерии, хоть и простейшие, но активно развивающиеся организмы, со временем приобретающие все новые и новые свойства. Инстинкт самосохранения и способность приспосабливаться к различным условиям жизни делают патогенных микроорганизмов сильнее. В ответ на угрозу для жизни они начинают развивать в себе способности противостоять ей, выделяя секрет, ослабляющий или полностью нейтрализующий действие активного вещества противомикробных препаратов.

Получается, что действенные некогда антибиотики просто-напросто перестают выполнять свою функцию. В этом случае говорят о развитии антибиотикорезистентности к препарату. И дело здесь вовсе не в эффективности действующего вещества АМП, а в механизмах усовершенствования болезнетворных микроорганизмов, благодаря которым бактерии становятся не чувствительными к антибиотикам, призванным бороться с ними.

Итак, антибиотикорезистентность – это не что иное, как снижение восприимчивости бактерий к противомикробным препаратам, которые были созданы для их уничтожения. Именно по этой причине лечение, казалось бы, правильно подобранными препаратами не дает ожидаемых результатов.

Проблема антибиотикорезистентности

Отсутствие эффекта от антибиотикотерапии, связанное с антибиотикорезистентностью, приводит к тому, что болезнь продолжает прогрессировать и переходит в более тяжелую форму, лечение которой становится еще более затруднительным. Особую опасность представляют случаи, когда бактериальная инфекция поражает жизненно важные органы: сердце, легкие, головной мозг, почки и т.д., ведь в этом случае промедление смерти подобно.

Вторая опасность заключается в том, что некоторые болезни при недостаточности терапии антибиотиками могут приобретать хроническое течение. Человек становится носителем усовершенствованных микроорганизмов, устойчивых к антибиотикам определенной группы. Он же теперь является источником инфекции, бороться с которой старыми методами становится бессмысленным.

Все это подталкивает фармацевтическую науку к изобретению новых, более эффективных средств с другими действующими веществами. Но процесс опять идет по кругу с развитием антибиотикорезистентности уже к новым препаратам из разряда противомикробных средств.

Если кому-то кажется, что проблема антибиотикорезистентности возникла совсем недавно, он очень ошибается. Эта проблема стара как мир. Ну, возможно не настолько, и все же лет 70-75 ей уже есть. Согласно общепринятой теории, появилась она вместе с внедрением в медицинскую практику первых антибиотиков где-то в 40-х годах ХХ столетия.

Хотя существует концепция более раннего появления проблемы резистентности микроорганизмов. До появления антибиотиков этой проблемой особо не занимались. Ведь это так естественно, что бактерии, как и другие живые существа, старались приспособиться к неблагоприятным условиям окружающей среды, делали это по-своему.

Проблема резистентности болезнетворных бактерий напомнила о себе, когда появились первые антибиотики. Правда, тогда вопрос еще не стоял так актуально. В тот период активно велись разработки различных групп антибактериальных средств, что в некотором роде было обусловлено неблагоприятной политической обстановкой в мире, военными действиями, когда бойцы умирали от ранений и сепсиса лишь потому, что им не могли оказать эффективную помощь из-за отсутствия необходимых препаратов. Просто этих препаратов еще не существовало.

Наибольшее число разработок велось в 50-60 годах ХХ столетия, и в течение 2 последующих десятилетий велось их усовершенствование. Прогресс на этом не закончился, но начиная с 80-х годов разработок в отношении антибактериальных средств стало заметно меньше. Виной ли тому большая затратность этого предприятия (разработка и выпуск нового препарата в наше время доходит уже до границы в 800 миллионов долларов) или банальное отсутствие новых идей в отношении «воинственно настроенных» активных веществ для инновационных препаратов, но в связи с этим проблема антибиотикорезистентности выходит на новый пугающий уровень.

Занимаясь разработкой перспективных АМП и создавая новые группы таких препаратов, ученые надеялись победить множественные виды бактериальной инфекции. Но все оказалось не так просто «благодаря» антибиотикорезистентности, довольно быстро развивающейся у отдельных штаммов бактерий. Энтузиазм понемногу иссякает, но проблема так и остается нерешенной долгое время.

Остается непонятным, как может у микроорганизмов развиваться устойчивость к препаратам, которые по идее должны были их убить? Здесь нужно понимать, что «убийство» бактерий происходит лишь тогда, когда препарат применяется по назначению. А что же мы имеем на самом деле?

Причины антибиотикорезистентности

Тут мы подошли к главному вопросу, кто же виноват, что бактерии при воздействии на них антибактериальных средств не умирают, а прямо-таки перерождаются, приобретая новые свойства, которые далеко не на руку человечеству? Что провоцирует такие изменения, происходящие с микроорганизмами, являющимися причиной многих болезней, с которыми человечество борется не одно десятилетие?

Понятно, что истинной причиной развития антибиотикорезистентности является способность живых организмов выживать в различных условиях, приспосабливаясь к ним разными путями. Но ведь возможности увернуться от смертельного снаряда в лице антибиотика, который по идее должен нести им смерть, у бактерий нет. Так как же получается, что они не только выживают, но и усовершенствуются параллельно с усовершенствованием фармацевтических технологий?

Нужно понимать, что если есть проблема (в нашем случае развитие антибиотикорезистентности у патогенных микроорганизмов), значит есть и провоцирующие факторы, создающие для нее условия. Как раз в этом вопросе мы сейчас и попробуем разобраться.

Факторы развития антибиотикорезистентности

Когда человек приходит к врачу с жалобами на здоровье, он ожидает от специалиста квалифицированной помощи. Если речь заходит об инфекции дыхательных путей или других бактериальных инфекциях задача врача назначить эффективный антибиотик, который не даст болезни прогрессировать, и определить необходимую для этой цели дозировку.

Выбор медикаментов у врача достаточно большой, но как определить именно тот препарат, который реально поможет справиться с инфекцией? С одной стороны для оправданного назначения противомикробного препарата необходимо для начала выяснить тип возбудителя болезни, согласно этиотропной концепции выбора препарата, которая считается наиболее правильной. Но с другой стороны, на это может уйти до 3 и более дней, в то время важнейшим условием успешного излечения считается своевременная терапия на ранних сроках болезни.

Врачу ничего не остается, как после постановки диагноза действовать в первые дни практически наугад, чтобы как-то затормозить болезнь и не дать ей распространится на другие органы (эмпирический подход). При назначении амбулаторного лечения практикующий врач исходит из того, что возбудителем конкретной болезни могут быть определенные виды бактерий. Этим и обусловлен первоначальный выбор препарата. Назначение может претерпевать изменения в зависимости от результатов анализа на возбудитель.

И хорошо, если назначение врача подтвердится результатами анализов. В противном случае будет потеряно не только время. Дело в том, что для успешного лечения имеется еще одно необходимое условие – полная дезактивация (в медицинской терминологии есть понятие «иррадикация») патогенных микроорганизмов. Если этого не происходит, выжившие микробы попросту «переболеют», и у них выработается своеобразный иммунитет к активному веществу противомикробного препарата, вызвавшего их «болезнь». Это так же естественно, как и выработка антител в человеческом организме.

Получается, если антибиотик подобран неправильно либо неэффективными окажутся режим дозирования и приема препарата, патогенные микроорганизмы могут не погибнуть, а видоизмениться или приобрести ранее не свойственные им возможности. Размножаясь, такие бактерии образуют целые популяции штаммов, устойчивых к антибиотикам конкретной группы, т.е. антибиотикорезистентных бактерий.

Еще одним фактором, негативно влияющим на подверженность патогенных микроорганизмов воздействию антибактериальных препаратов, является использование АМП в животноводстве и ветеринарии. Применение антибиотиков в этих областях не всегда оправдано. К тому же определение возбудителя болезни в большинстве случаев не осуществляется либо проводится с опозданием, ведь антибиотиками лечат в основном животных, находящихся в довольно тяжелом состоянии, когда все решает время, и ждать результаты анализов не представляется возможным. А в селе у ветеринара не всегда даже такая возможность есть, вот он и действует «вслепую».

Но это бы еще ничего, только есть еще одна большая проблема – человеческий менталитет, когда каждый сам себе доктор. Причем, развитие информационных технологий и возможность приобрести большинство антибиотиков без рецепта врача лишь усугубляют эту проблему. А если учесть, что неквалифицированных докторов-самоучек у нас больше, чем тех, кто строго соблюдает назначения и рекомендации врача, проблема приобретает глобальные масштабы.

Механизмы антибиотикорезистентности

В последнее время антибиотикорезистентность стала проблемой номер один в фармакологической промышленности, занимающейся разработкой противомикробных препаратов. Все дело в том, что она свойственная практически всем известным разновидностям бактерий, в связи с чем терапия антибиотиками становится все менее эффективной. Такие распространенные патогенные микроорганизмы, как стафилококки, кишечная и синегнойная палочка, протеи имеют устойчивые штаммы, которые распространены более своих предков, подверженных воздействию антибиотиков.

Резистентность к различным группам антибиотиков, и даже к отдельным препаратам, развивается по-разному. Старые добрые пенициллины и тетрациклины, а также более новые разработки в виде цефалоспоринов и аминогликозидов характеризуются медленным развитием антибиотикорезистентности, параллельно с эти снижается и их терапевтический эффект. Чего нельзя сказать о таких препаратах, действующим веществом которых является стрептомицин, эритромицин, римфампицин и линкомицин. Резистентность к этим препаратам развивается стремительным темпом, в связи с чем назначение приходится менять даже в течение курса лечения, не дожидаясь его окончания. То же самое касается препаратов олеандомицина и фузидина.

Все это дает основание предположить, что механизмы развития антибиотикорезистентности к различным препаратам значительно отличаются. Попробуем разобраться, какие свойства бактерий (природные или приобретенные) не позволяют антибиотикам производить их иррадикацию, как это задумано изначально.

Для начала определимся с тем, что резистентность у бактерии может быть природной (защитные функции, дарованные ей изначально) и приобретенной, о которой мы говорили выше. До сих пор мы в основном говорили об истинной антибиотикорезистентности, связанной с особенностями микроорганизма, а не с некорректным выбором или назначением препарата (в этом случае речь идет о ложной антибиотикорезистентности).

Каждое живое существо, включая простейших, имеет свое неповторимое строение и некоторые свойства, позволяющие ему выживать. Все это закладывается генетически и передается из поколения в поколение. Природная резистентность к конкретным действующим веществам антибиотиков также заложена генетически. Причем у разных видов бактерий резистентность направлена на определенный вид препаратов, с чем и связана разработка различных групп антибиотиков, воздействующих на отдельно взятый вид бактерий.

Факторы, которые обуславливают природную резистентность, могут быть различными. Например, структура белковой оболочки микроорганизма может быть такова, что антибиотику не под силу с ним справиться. А ведь антибиотикам под силу повлиять лишь на белковую молекулу, разрушая ее и вызывая гибель микроорганизма. Разработка эффективных антибиотиков подразумевает учет строения белков бактерий, против которых направлено действие препарата.

Например, антибиотикорезистентность стафилококков в отношении аминогликозидов связана с тем, что последние не могут проникнуть сквозь микробную оболочку.

Вся поверхность микроба покрыта рецепторами, с отдельными видами которых и связываются АМП. Малое количество подходящих рецепторов или их полное отсутствие приводят к тому, что связывания не происходит, а значит и антибактериальный эффект отсутствует.

Среди прочих рецепторов есть и такие, которые для антибиотика служат своеобразным маячком, сигнализирующим о местоположении бактерии. Отсутствие таких рецепторов позволяет микроорганизму скрываться от опасности в виде АМП, что является своеобразной маскировкой.

У некоторых микроорганизмов есть природная способность активно выводить АМП из клетки. Такая способность называется эффлюксом и она характеризует резистентность синегнойной палочки в отношении карбапенемов.

Биохимический механизм антибиотикорезистентности

Кроме перечисленных выше природных механизмов развития антибиотикорезистентности существует еще один, связанный не со строением бактериальной клетки, а с ее функционалом.

Дело в том, что в организме бактерии могут вырабатываться ферменты, способные оказывать негативное действие на молекулы активного вещества АМП и снижать его эффективность. Бактерии при взаимодействии с таким антибиотиком тоже страдают, их действие заметно ослабляется, что создает видимость излечения от инфекции. Тем не менее, пациент остается носителем бактериальной инфекции еще некоторое время после так называемого «выздоровления».

В этом случае мы имеем дело с модификацией антибиотика, в результате чего он становится неактивным в отношении данного вида бактерий. Ферменты, вырабатываемые разными видами бактерий, могут отличаться. Для стафилококков характерен синтез бета-лактамазы, провоцирующей разрыв лактемного кольца антибиотиков пенициллинового ряда. Выработкой ацетилтрансферазы можно объяснить устойчивость к хлорамфениколу граммотрицательных бактерий и т.д.

Приобретенная антибиотикорезистентность

Бактериям, как и другим организмам, не чужда эволюция. В ответ на «военные» действия в их отношении, микроорганизмы могут изменять свою структуру или начать синтезировать такое количество ферментного вещества, которое способно не только снижать эффективность препарата, но и разрушать его полностью. Например, активная выработка аланинтрансферазы делает «Циклосерин» неэффективным в отношении бактерий, продуцирующих ее в больших количествах.

Антибиотикорезистентность может развиваться и вследствие модификации в структуре клетки белка, являющегося одновременно и ее рецептором, с которым должен связываться АМП. Т.е. данный вид белка может отсутствовать в бактериальной хромосоме или изменить свои свойства, в результате чего связь между бактерией и антибиотиком становится невозможной. Например, утрата или видоизменение пенициллинсвязывающего белка становится причиной нечувствительности к пенициллинам и цефалоспоринам.

В результате развития и активации защитных функций у бактерий, ранее подверженных разрушительному действию определенного вида антибиотикив, изменяется проницаемость клеточной мембраны. Это может быть осуществлено за счет уменьшения каналов, по которым действующие вещества АМП могут проникнуть внутрь клетки. Именно эти свойством обусловлена нечувствительность стрептококков к бета-лактамным антибиотикам.

Антибиотики способны влиять на клеточный метаболизм бактерий. В ответ на это некоторые микроорганизмы научились обходиться без химический реакций, на которые воздействует антибиотик, что также является отдельным механизмом развития антибиотикорезистентности, который требует постоянного контроля.

Иногда бактерии идут на определенную хитрость. Путем присоединения к плотной субстанции они объединяются в сообщества, именуемые биопленкой. В рамках сообщества они являются менее чувствительными к антибиотикам и могут спокойно переносить дозировки, убийственные для отдельно взятой бактерии, обитающей вне «коллектива».

Еще один вариант – это объединение микроорганизмов в группы на поверхности полужидкой среды. Даже после деления клеток часть бактериальной «семьи» остается внутри «группировки», не поддающейся влиянию антибиотиков.

Гены антибиотикорезистентности

Существуют понятия генетической и негенетической лекарственной резистентности. С последней мы имеем дело, когда рассматриваем бактерии с неактивным метаболизмом, не склонные к размножению в обычных условиях. У таких бактерий может вырабатываться антибиотикорезистентность к определенным видам препаратов, тем не менее, их потомству эта способность не передается, поскольку она не заложена генетически.

Это свойственно патогенным микроорганизмам, вызывающим туберкулез. Человек может заразиться и не подозревать о болезни долгие годы, пока его иммунитет в силу каких-то причин не даст сбой. Этой является толчком к размножению микобактерий и прогрессированию болезни. Но для лечения туберкулеза используются все те же препараты, вед бактериальное потомство по-прежнему остается чувствительным к ним.

Точно так же обстоит дело и с утратой белка в составе клеточной стенки микроорганизмов. Вспомним, опять же о бактериях, чувствительных к пенициллину. Пенициллины тормозят синтез белка, служащего для построения клеточной оболочки. Под воздействием АМП пенициллинового ряда микроорганизмы могут утрачивать стенку клеток, строительным материалом которой является пенициллинсвязывающий белок. Такие бактерии становятся резистентными к пенициллинам и цефалоспоринам, которым теперь не с чем связываться. Это явление временное, не связанное с мутацией генов и передачей видоизмененного гена по наследству. С появлением клеточной стенки, свойственной предыдущим популяциям, антибиотикорезистентность у таких бактерий исчезает.

О генетической антибиотикорезистентности говорят, когда изменения в клетках и метаболизме внутри них происходят на уровне генов. Мутации генов могут вызывать изменения в структуре клеточной мембраны, провоцировать выработку ферментов, защищающих бактерии от антибиотиков, а также изменять количество и свойства рецепторов бактериальной клетки.

Здесь существует 2 пути развития событий: хромосомный и внехромосомный. Если происходит мутация гена на том участке хромосомы, который отвечает за чувствительность к антибиотикам, говорят о хромосомной антибиотикорезистентности. Сама по себе такая мутация возникает крайне редко, обычно ее вызывает действие лекарств, но опять-таки не всегда. Контролировать это процесс очень сложно.

Хромосомные мутации могут передаваться из поколения в поколение, постепенно формируя определенные штаммы (разновидности) бактерий, устойчивых к тому или иному антибиотику.

Виновниками внехромосомной резистентности к антибиотикам становятся генетические элементы, существующие вне хромосом и называемые плазмидами. Именно эти элементы содержат гены, ответственные за выработку ферментов и проницаемость бактериальной стенки.

Антибиотикорезистентность чаще всего является результатом горизонтального переноса генов, когда одни бактерии передают некоторые гены другим, не являющимся их потомками. Но иногда можно наблюдать и несвязанные точечные мутации в геноме патогена (размер 1 в 108 за один процесс копирования ДНК материнской клетки, что наблюдается при репликации хромосом).

Так осенью 2015 года ученые из Китая описали ген MCR-1, обнаруженный в свином мясе и кишечнике свиней. Особенностью этого гена является возможность его передачи другим организмам. Спустя некоторое время этот же ген был найден не только в Китае, но и в других странах (США, Англия, Малайзия, страны Европы).

Гены антибиотикорезистентности способны стимулировать выработку ферментов, которые ранее не вырабатывались в организме бактерий. Например, фермент NDM-1(металло-бета-лактамаза 1), обнаруженный у бактерий Klebsiella pneumoniae в 2008 году. Сначала он был обнаружен у бактерий родом из Индии. Но в последующие годы фермент, обеспечивающий антибиотикорезистентность относительно большинства АМП, был выявлен у микроорганизмов и в других странах (Великобритания, Пакистан, США, Япония, Канада).

Патогенные микроорганизмы могут проявлять устойчивость как по отношению к определенным препаратам или группам антибиотиков, так и относительно различных групп препаратов. Существует такое понятие, как перекрестная антибиотикорезистентность, когда микроорганизмы становятся нечувствительными к препаратам со сходным химическим строением или механизмом воздействия на бактерии.

Антибиотикорезистентность стафилококков

Стафилококковая инфекция считается одной из самых распространенных среди внебольничных инфекций. Впрочем, даже в условиях стационара на поверхностях различных объектов можно обнаружить порядка 45 различных штаммов стафилококка. Это говорит о том, что борьба с этой инфекцией является чуть ли не первоочередной задачей медработников.

Трудность выполнения этой задачи заключается в том, что большинство штаммов наиболее патогенных стафилококков Staphylococcus epidermidis и Staphylococcus aureus являются резистентными ко многим видам антибиотиков. И количество таких штаммов растет с каждым годом.

Способность стафилококков к множественным генетическим мутациям в зависимости от условий обитания делает их практически неуязвимыми. Мутации передаются потомкам и в краткие сроки появляются целые генерации устойчивых к антимикробным препаратам инфекционных возбудителей из рода стафилококков.

Самая большая проблема – это метициллинорезистентные штаммы, которые являются устойчивыми не только к бета-лактамам (β-лактамным антибиотикам: определенные подгруппы пенициллинов, цефалоспоринов, карбапенемов и монобактамов), но и другим видам АМП: тетрациклинам, макролидам, линкозамидам, аминогликозидам, фторхинолонам, хлорамфениколу.

Продолжительное время уничтожить инфекцию можно было только при помощи гликопептидов. В настоящее время проблема антибиотикорезистентности таких штаммов стафилококка решается посредством нового вида АМП – оксазолидинонов, ярким представителем которых является линезолид.

Методы определения антибиотикорезистентности

При создании новых антибактериальных препаратов очень важно четко определить его свойства: как они действуют и в отношении каких бактерий эффективны. Определить это можно лишь при помощи лабораторных исследований.

Анализ на антибиотикорезистентность можно провести с использованием различных методов, самыми популярными из которых считаются:

  • Метод дисков, или диффузия АМП в агар по Кирби-Байер
  • Метод серийных разведений
  • Генетическая идентификация мутаций, вызывающих лекарственную резистентность.

Первый метод на сегодняшний день считается самым распространенным благодаря дешевизне и простоте исполнения. Суть метода дисков заключается в том, что выделенные в результате исследований штаммы бактерий помещают в питательную среду достаточной плотности и накрывают пропитанными раствором АМП бумажными дисками. Концентрация антибиотика на дисках отличается, поэтому когда происходит диффузия препарата в бактериальную среду, можно наблюдать градиент концентраций. По величине зоны отсутствия роста микроорганизмов можно судить об активности препарата и рассчитать эффективную дозировку.

Вариантом метода дисков служит Е-тест. В этом случае вместо дисков применяют полимерные пластины, на которые наносится определенная концентрация антибиотика.

Недостатками этих методов считается неточность вычислений, связанная с зависимостью градиента концентраций от различных условий (плотности среды, температуры, кислотности, содержания кальция и магния и т.д.).

Метод серийных разведений основан на создании нескольких вариантов жидкой или плотной среды, содержащих различные концентрации исследуемого препарата. Каждый из вариантов заселяют определенным количеством исследуемого бактериального материала. По окончании инкубационного периода оценивают рост бактерий или его отсутствие. Этот метод позволяет определить минимально-эффективную дозу препарата.

Метод можно упростить, взяв за образец всего 2 среды, концентрация которых будет максимально близка к минимуму, необходимому для инактивации бактерий.

Метод серийных разведений по праву считается золотым стандартом определения антибиотикорезистентности. Но из-за дороговизны и трудоемкости он не всегда применим в отечественной фармакологии.

Методика идентификации мутаций дает информацию о наличии у того или иного штамма бактерий видоизмененных генов, способствующих развитию антибиотикорезистентности к конкретным препаратам, и в связи с этим систематизировать возникающие ситуации с учетом сходства фенотипических проявлений.

Этот метод отличается высокой стоимостью тест-систем для его исполнения, тем не менее, его ценность для прогнозирования генетических мутаций у бактерий неоспорима.

Какими бы эффективными ни были вышеперечисленные методы исследования антибиотикорезистентности, они не могут полноценно отразить ту картину, которая развернется в живом организме. А если еще и учесть тот момент, что организм каждого человека индивидуален, в нем по-разному могут проходить процессы распределения и метаболизма лекарственных средств, экспериментальная картина бывает весьма далека от реальной.

Пути преодоления антибиотикорезистентности

Как бы ни был хорош тот или иной препарат, но при имеющемся у нас отношении к лечению, нельзя исключать тот факт, что в какой-то момент чувствительность патогенных микроорганизмов к нему может измениться. Создание новых препаратов с теми же действующими веществами тоже никак не решает проблему антибиотикорезистентности. Да и к новым поколениям препаратов чувствительность микроорганизмов при частых неоправданных или некорректных назначениях постепенно ослабевает.

Прорывом в этом плане считается изобретение комбинированных препаратов, которые называют защищенными. Их применение обосновано в отношении бактерий, продуцирующих разрушительные для обычных антибиотиков ферменты. Защита популярных антибиотиков осуществляется за счет включения в состав нового препарата специальных средств (например, ингибиторов ферментов, опасных для определенного вида АМП), которые купируют выработку этих ферментов бактериями и предотвращают выведение препарата из состава клетки посредством мембранного насоса.

В качестве ингибиторов бета-лактамаз принято использовать клавулановую кислоту или сульбактам. Их добавляют в бета-лактамным антибиотикам, благодаря чему повышается эффективность последних.

В настоящее время ведутся разработки препаратов, способных воздействовать не только на отдельно взятые бактерии, но и на те, которые объединились в группы. Борьбу с бактериями в составе биопленки можно вести лишь после ее разрушения и высвобождения организмов, прежде связанных между собой посредством химических сигналов. В плане возможности разрушения биопленки ученые рассматривают такой вид препаратов, как бактериофаги.

Борьба с другими бактериальными «группировками» ведется путем перенесения их в жидкую среду, где микроорганизмы начинают существовать раздельно, и теперь с ними можно бороться привычными препаратами.

Столкнувшись с явлением резистентности в процессе лечения препаратом, врачи решают проблему назначение различных препаратов, эффективных в отношении выделенных бактерий, но с разным механизмом воздействия на патогенную микрофлору. Например, одновременно используют препараты с бактерицидным и бактериостатическим действием или заменяют один препарат другим, из иной группы.

Профилактика антибиотикорезистентности

Основной задачей антибиотикотерапии считается полное уничтожение популяции болезнетворных бактерий в организме. Эту задачу можно решить лишь путем назначения эффективных антимикробных препаратов.

Эффективность препарата соответственно определяется спектром его активности (включен ли в этот спектр выявленный возбудитель), возможностями преодоления механизмов антибиотикорезистентности, оптимально подобранным режимом дозирования, при котором происходит гибель патогенной микрофлоры. Помимо этого при назначении препарата должны учитываться вероятность развития побочных эффектов и доступность лечения для каждого отдельно взятого пациента.

При эмпирическом подходе к терапии бактериальных инфекций учесть все эти моменты не представляется возможным. Требуется высокий профессионализм врача и постоянный мониторинг информации об инфекциях и эффективных препаратах для борьбы с ними, чтобы назначение не оказалось неоправданным и не привело к развитию антибиотикорезистентности.

Создание оснащенных высокотехнологическим оборудованием медицинских центров позволяет практиковать этиотропное лечение, когда сначала в более краткие сроки выявляют возбудителя, а затем производится назначение эффективного препарата.

Профилактикой антибиотикорезистентности можно считать и контроль назначения препаратов. Например, при ОРВИ назначение антибиотиков ничем не оправдано, зато способствует развитию антибиотикорезистентности микроорганизмов, находящихся до поры до времени в «спящем» состоянии. Дело в том, что антибиотики могут спровоцировать ослабление иммунитета, что в свою очередь вызовет размножение бактериальной инфекции, схоронившейся внутри организма или попавшей в него извне.

Очень важно, чтобы назначаемые препараты соответствовали той цели, которую нужно достигнуть. Даже препарат, назначенный в профилактических целях, должен иметь все свойства, необходимые для уничтожения патогенной микрофлоры. Выбор препарата наобум может не только не дать ожидаемого эффекта, но и усугубить ситуацию развитием устойчивости к препарату определенного вида бактерий.

Особое внимание стоит уделить и дозировке. Малые дозы, неэффективные для борьбы с инфекцией, опять-таки приводят к формированию у болезнетворных микроорганизмов антибиотикорезистентности. Но переусердствовать также не стоит, ведь при терапии антибиотиками велика вероятность развития токсических эффектов и анафилактических реакций, опасных для жизни пациента. Тем более если лечение проводится в амбулаторных условиях при отсутствии контроля со стороны медперсонала.

Посредством СМИ нужно донести до людей всю опасность самолечения антибиотиками, а также неоконченного лечения, когда бактерии не погибают, а лишь становятся менее активными с выработанным механизмом антибиотикорезистентности. Такой же эффект оказывают и дешевые нелицензированные препараты, которые нелегальные фармацевтические компании позиционируют как бюджетные аналоги уже существующих препаратов.

Высокоэффективной мерой профилактики антибиотикорезистентности считается постоянный мониторинг существующих инфекционных возбудителей и развития у них антибиотикорезистентности не только на уровне района или области, но и в масштабах страны (и даже всего мира). Увы, об этом приходится только мечтать.

На Украине системы инфекционного контроля как таковой не существует. Приняты лишь отдельные положения, одно из которых (еще 2007 года!), касающееся акушерских стационаров, предусматривает введение различных методов мониторинга внутрибольничных инфекций. Но все опять же упирается в финансы, и на местах такие исследования в основном не проводятся, не говоря уже о врачах из других отраслей медицины.

В Российской федерации к проблеме антибиотикорезистентности отнеслись с большей ответственностью, и доказательством тому является проект «Карта антимикробной резистентности России». Исследованиями в этой области, сбором информации и ее систематизации для наполнения карты антибиотикорезистентности занимались такие крупные организации, как Научно-исследовательский институт антимикробной химиотерапии, Межрегиональная ассоциация микробиологии и антимикробной химиотерапии, а также Научно-методический центр мониторинга антибиотикорезистентности, созданный по инициативе Федерального агентства по здравоохранению и социальному развитию.

Информация, предоставляемая в рамках проекта, постоянно обновляется и доступна всем пользователям, кому необходима информация по вопросам антибиотикорезистентности и эффективного лечения инфекционных заболеваний.

Понимание того, насколько актуален на сегодняшний день вопрос снижения чувствительности болезнетворных микроорганизмов и поиска решения этой проблемы, приходит постепенно. Но это уже первый шаг на пути эффективной борьбы с проблемой по имени «антибиотикорезистентность». И этот шаг крайне важен.

Важно знать!

Природные антибиотики не только не ослабляют защитные силы организма, а наоборот укрепляют его. Антибиотики природного происхождения издавна помогали бороться с различными заболеваниями. С открытием в 20 веке антибиотиков и масштабным производством синтетических антибактериальных препаратов медицина научилась бороться с тяжелыми и неизлечимыми заболеваниями.

В последние годы внутрибольничные инфекции все чаще вызываются грамотрицательными микроорганизмами. Наибольшую клиническую значимость приобрели микроорганизмы, принадлежащие к семейству Enterobacteriaceae и Pseudomonas . Из семейства энтеробактерий микроорганизмы родов Escherichia , Klebsiella , Proteus , Citrobacter , Enterobacter , Serratia - стали часто упоминаться в литературе в качестве возбудителей послеоперационных осложнений, сепсиса, менингита . Большинство энтеробактерий относятся к условно-патогенным микроорганизмам, так как в норме эти бактерии (за исключением рода Serratia) являются облигатными или транзиторными представителями кишечной микрофлоры, вызывая инфекционные процессы при определенных условиях у ослабленных больных .

Кишечные грамотрицательные бациллы с резистентностью к цефалоспоринам третьего поколения были впервые выявлены в середине 80-х годов в Западной Европе. Большинство из этих штаммов (Klebsiella pneumoniae , другие виды клебсиелл и Escherichia coli ) были резистентны ко всем беталактамным антибиотикам, за исключением цефамицинов и карбапенемов . Гены, в которых закодирована информация о бета-лактамазах расширенного спектра, локализованы в плазмидах, что облегчает возможность диссеминации бета-лактамаз расширенного спектра среди грамотрицательных бактерий .

Изучение эпидемий нозокомиальных инфекций, вызванных энтеробактериями, вырабатывающими бета-лактамазы расширенного спектра, указывало на то, что эти штаммы возникали в ответ на интенсивное использование цефалоспоринов третьего поколения .

Распространенность бета-лактамаз расширенного спектра у грамотрицательных бацилл варьирует в разных странах и среди учреждений внутри одной страны с частой зависимостью от набора применяемых антибиотиков. В большом исследовании, проведенном в США, от 1,3 до 8,6% клинических штаммов E.coli и K.pneumoniae были резистентны к цефтазидиму . Часть изолятов в этом исследовании подверглась более тщательному изучению, при этом установлено, что почти у 50% штаммов резистентность была обусловлена продукцией бета-лактамаз расширенного спектра. В настоящее время идентифицировано более 20 бета-лактамаз расширенного спектра .

Клинические исследования антимикробной терапии инфекций, вызванных бактериями, продуцирующими бета-лактамазы расширенного спектра, практически отсутствуют, а банк данных по борьбе с этими патогенами состоит только из единичных описаний случаев и ограниченной ретроспективной информации об эпидемиологических исследованиях. Данные о лечении нозокомиальных эпидемий, вызванных грамотрицательными бактериями, вырабатывающими эти ферменты, указывают на то, что некоторые инфекции (например, инфекции мочевого тракта) могут излечиваться цефалоспоринами четвертого поколения и карбапенемами, однако тяжелые инфекции такому лечению поддаются не всегда .

Отмечается резкое возрастание роли энтеробактера как возбудителя заболеваний . Enterobacter spp. печально известны из-за способности приобретать резистентность к беталактамным антибиотикам во время терапии , причем обусловлена она инактивирующими ферментами (бета-лактамазами). Появление мультирезистентных штаммов происходит за счет двух механизмов . В первом случае микроорганизм оказывается под воздействием индуктора фермента (такого, как беталактамный антибиотик), и повышенные уровни резистентности проявляются до тех пор, пока присутствует индуктор (антибиотик). Во втором случае развивается спонтанная мутация в микробной клетке до стабильно дерепрессированного состояния. Клинически почти все проявления неудач лечения объясняются этим. Индуцированные бета-лактамазы обусловливают развитие мультирезистентности в процессе антибиотикотерапии, охватывая в том числе второе (цефамандол , цефокситин ) и третье (цефтриаксон, цефтазидим) поколения цефалоспоринов, а также антипсевдомонадные пенициллины (тикарциллин и пиперациллин ).

Сообщение о вспышке нозокомиальных инфекций в отделении интенсивной терапии для новорожденных показывает, как рутинное применение цефалоспоринов широкого спектра действия может привести к появлению резистентных микроорганизмов . В этом отделении, где в течение 11 лет ампициллин и гентамицин были стандартными эмпирическими препаратами при подозрении на сепсис, стали появляться серьезные инфекции, вызванные резистентными к гентамицину штаммами K.pneumoniae. Гентамицин был заменен цефотаксимом, и вспышка была ликвидирована. Но вторая вспышка тяжелых инфекций, вызванная резистентными к цефотаксиму E.cloacae, произошла через 10 недель.

Heusser и соавт. предупреждают об опасности эмпирического применения цефалоспоринов при инфекциях центральной нервной системы, обусловленных грамотрицательными микроорганизмами, которые могут обладать индуцируемыми бета-лактамазами. В связи с этим предлагаются альтернативные препараты, не чувствительные к бета-лактамазам (триметоприм/сульфаметоксазол, хлорамфеникол, имипенем). Комбинированная терапия с добавлением аминогликозидов или других антибиотиков может оказаться приемлемой альтернативой монотерапии цефалоспоринами в лечении заболеваний, вызванных Enterobacter .

В середине 80-х годов инфекции, вызываемые клебсиеллами, превратились в терапевтическую проблему во Франции и Германии, так как появились штаммы K.pneumoniae, резистентные к цефотаксиму, цефтриаксону и цефтазидиму, которые считались абсолютно стабильными к гидролитическому действию бета-лактамаз. У этих бактерий были обнаружены новые разновидности бета-лактамаз . Высокорезистентные клебсиеллы могут стать причиной внутрибольничных эпидемий раневых инфекций и сепсиса .

Псевдомонады не являются исключением в плане развития антибиотикорезистентности. Все штаммы P.aeruginosa в своем генетическом коде имеют ген цефалоспориназы. Для защиты от антипсевдомонадных пенициллинов в них могут импортироваться плазмиды, несущие ТЕМ-1-бета-лактамазу. Также через плазмиды передаются гены ферментов, которые гидролизируют антипсевдомонадные пенициллины и цефалоспорины. Не являются редкостью и аминогликозидинактивирующие ферменты . Даже амикацин , самый стабильный из всех аминогликозидов, оказывается бессилен. Штаммов P.aeruginosa, резистентных против всех аминогликозидов, становится все больше, и для врача при лечении муковисцидоза и ожоговых пациентов это часто оказывается неразрешимой проблемой. P.aeruginosa все чаще оказывается резистентной и к имипенему .

Haemophilus influenzae - как долго еще будут действовать цефалоспорины?

В 60-е и 70-е годы врачи следовали рекомендациям о целесообразности применения ампициллина против H.influenzae . 1974 год определил конец этой традиции. Тогда была открыта переносимая плазмидами бета-лактамаза, названная ТЕМ. Частота выделения устойчивых к бета-лактамазе штаммов H.influenzae варьирует между 5 и 55%. В Барселоне (Испания) до 50% штаммов H.influenzae резистентны к 5 и более антибиотикам, среди которых хлорамфеникол и ко-тримоксазол . Первое сообщение о резистентности этого микроорганизма к цефалоспоринам, а именно к цефуроксиму, когда была обнаружена повышенная МПК цефуроксима , уже появилось в Англии в начале 1992 года.

Борьба с антибиотикорезистентностью бактерий

Существует несколько способов преодоления резистентности бактерий, связанной с продукцией ими бета-лактамаз, среди них :

Синтез антибиотиков новых химических структур, не подверженных действию бета-лактамаз (например, хинолоны), или химическая трансформация известных природных структур;

Поиск новых беталактамных антибиотиков, устойчивых к гидролитическому действию бета-лактамаз (новые цефалоспорины, монобактамы , карбапенемы, тиенамицин);

Синтез ингибиторов бета-лактамаз.

Использование ингибиторов бета-лактамаз позволяет сохранить преимущества известных антибиотиков . Хотя идея о том, что бета-лактамные структуры могут ингибировать бета-лактамазы, возникла еще в 1956 году, но клиническое применение ингибиторов началось только в 1976 году после открытия клавулановой кислоты . Клавулановая кислота действует как "суицидный" ингибитор энзима, вызывая необратимое подавление бета-лактамаз. Такое ингибирование бета-лактамаз осуществляется путем реакции ацилирования, аналогично реакции, при которой бета-лактамный антибиотик связывается с пенициллинсвязывающими белками. По структуре клавулановая кислота является бета-лактамным соединением. Не обладая антимикробными свойствами, она необратимо связывает бета-лактамазы и выводит их из строя.

После выделения клавулановой кислоты в последующем были получены другие ингибиторы бета-лактамаз (сульбактам и тазобактам ). В комбинации с беталактамными антибиотиками (ампициллином, амоксициллином, пиперациллином и др.) они проявляют широкий спектр активности в отношении продуцирующих бета-лактамазы микроорганизмов.

Другой путь борьбы с антибиотикорезистентностью микроорганизмов состоит в организации мониторинга распространенности резистентных штаммов с помощью создания международной сети оповещения . Выявление возбудителей и определение их свойств, в том числе чувствительности или резистентности к антибиотикам, необходимо проводить во всех случаях, особенно при регистрации внутрибольничной инфекции. Результаты таких исследований необходимо обобщать по каждому родильному дому, больнице, микрорайону, городу, области и т.д. Полученные данные об эпидемиологическом состоянии нужно периодически доводить до сведения лечащих врачей. Это позволит правильно выбрать при лечении ребенка тот препарат, к которому большинство штаммов чувствительно, и не назначать тот, к которому в данном районе или лечебном учреждении большинство штаммов резистентны.

Ограничение развития устойчивости микроорганизмов к антибактериальным препаратам может быть достигнуто при следовании определенным правилам , среди которых:

Проведение рационально обоснованной антибиотикотерапии, включая показания, целенаправленный выбор с учетом чувствительности и уровня резистентности, дозировку (опасна пониженная дозировка!), длительность (в соответствии с картиной заболевания и индивидуальным состоянием) - все это предполагает повышение квалификации врачей;

Обоснованно подходить к комбинированной терапии, используя ее строго по показаниям;

Введение ограничений на применение лекарственных средств ("барьерная политика"), что предполагает соглашение между клиницистами и микробиологами о применении препарата лишь при отсутствии эффективности уже используемых средств (создание группы антибиотиков резерва).

Развитие резистентности является неизбежным следствием широкого клинического применения антимикробных препаратов. Разнообразие механизмов приобретения бактериями резистентности к антибиотикам поражает. Все это требует усилий по поиску более эффективных путей применения имеющихся препаратов, направленных на минимизацию развития резистентности и определения наиболее эффективных методов лечения инфекций, вызваннных мультирезистентными микроорганизмами.

АНТИБИОТИКИ И ХИМИОТЕРАПИЯ, 1998-N4, стр. 43-49.

ЛИТЕРАТУРА

1. Burns J.L. Pediatr Clin North Am 1995; 42: 497-517.

2. Gold H.S., Moellering R.S. New Engl J Med 1996; 335: 1445-1453.

3. New antimicrobial agents approved by the U.S. Food and Drug Administration in 1994. Antimicrob Agents Chemother 1995; 39: 1010.

4. Cohen M.L. Science 1992; 257: 1050-1055.

5. Gibbons A. Ibid 1036-1038.

6. Hoppe J.E. Monatsschr Kinderheilk 1995; 143: 108-113.

7. Leggiadro R.J. Curr Probl Pediatr 1993; 23: 315-321.

9. Doern G.V., Brueggemann A., Holley H.P.Jr., Rauch A.M. Antimicrob Agents Chemother 1996; 40: 1208-1213.

10. Klugman K.R. Clin Microbiol Rev 1990; 3: 171-196.

11. Munford R.S., Murphy T.V. J Invest Med 1994; 42: 613-621.

12. Kanra G.Y., Ozen H., Secmeer G. et al. Pediatr Infect Dis J 1995; 14: 490-494.

13. Friedland I.R., Istre G.R. Ibid 1992; 11: 433-435. 14. Jacobs M.R. Clin Infect Dis 1992; 15: 119-127.

15. Schreiber J.R., Jacobs M.R. Pediatr Clinics North Am 1995; 42: 519-537.

16. Bradley J.S., Connor J.D. Pediatr Infect Dis J 1991; 10: 871-873.

17. Catalan M.J., Fernandez M., Vasquez A. et al. Clin Infect Dis 1994; 18: 766-770.

18. Sloas M.M., Barret F.F., Chesney P.J. et al. Pediatr Infect Dis J 1992; 11: 662-666.

19. Webby P.L., Keller D.S., Cromien J.L. et al. Ibid 1994; 13: 281-286.

20. Mason E.O., Kaplan S.L., Lamberht L.B. et al. Antimicrob Agents Chemother 1992; 36: 1703-1707.

21. Rice L.B., Shlaes D.M. Pediatr Clin Noth Am 1995; 42: 601-618.

22. Christie C., Hammond J., Reising S. et al. J Pediatr 1994; 125: 392-400.

23. Shay D.K., Goldmann D.A., Jarvis W.R. Pediatr Clin North Am 1995; 42: 703-716.

24. Gaines R., Edwards J. Infect Control Hosp Epid 1996; 17: Suppl: 18.

25. Spera R.V., Faber B.F. JAMA 1992; 268: 2563-2564.

26. Shay D.K., Maloney S.A., Montecalvo M. et al. J Infect Dis 1995; 172: 993-1000.

27. Landman D., Mobarakai N.V., Quale J.M. Antimicrob Agents Chemother 1993; 37: 1904-1906.

28. Shlaes D.M., Etter L., Guttman L. Ibid 1991; 35: 770-776.

29. Centers for Dis Contr and Prevention 1994; 59: 25758-25770.

30. Hospital Infect Contr Pract Advisory Comm. Infect Control Hosp Epid 1995; 16: 105-113.

31. Jones R.N., Kehrberg E.N., Erwin M.E., Anderson S.C. Diagn Microbiol Infect Dis 1994; 19: 203-215.

32. Veasy G.L., Tani L.Y., Hill H.R. J Pediatr 1994; 124: 9-13.

33. Gerber M.A. Pediatr Clin North Am 1995; 42: 539-551.

34. Miyamoto Y., Takizawa K., Matsushima A. et al. Antimicrob Agents Chemother 1978; 13: 399-404.

35. Gerber M.A. Pediatrics 1996; 97: Suppl: Part 2: 971-975.

36. Voss A., Milatovic D., Wallrauch-Schwarz C. et al. Eur J Clin Microbiol Infect Dis 1994; 13: 50-55.

37. Moreira B.M., Daum R.S. Pediatr Clin North Am 1995; 42: 619-648. 38. Meyer R. Pдdiatr Prax 1994; 46: 739-750.

39. Naquib M.H., Naquib M.T., Flournoy D.J. Chemotherapy 1993; 39: 400-404.

40. Walsh T.J., Standiford H.C., Reboli A.C. et al. Antimicrob Agents Chemother 1993; 37: 1334-1342.

41. Hill R.L.R., Duckworth G.J., Casewell M.W. J Antimicrob Chemother 1988; 22: 377-384.

42. Toltzis P., Blumer J.L. Pediatr Clin North Am 1995; 42: 687-702.

43. Philippon A., Labia R., Jacoby G. Antimicrob Agents Chemother 1989; 33: 1131-1136.

44. Sirot D., De Champs C., Chanal C. et al. Ibid 1991; 35: 1576-1581.

45. Meyer K.S., Urban C., Eagan J.A. et al. Ann Intern Med 1993; 119: 353-358.

46. Bush K., Jacoby G.A., Medeiros A.A. Antimicrob Agents Chemother 1995; 39: 1211-1233.

47. Dever C.A., Dermody T.S. Arch Intern Med 1991; 151: 886-895.

48. Bryan C.S., John J.F., Pai M.S. et al. Am J Dis Child 1985; 139: 1086-1089.

49. Heusser M.F., Patterson J.E., Kuritza A.P. et al. Pediatr Infect Dis J 1990; 9: 509-512.

50. Coovadia Y.M., Johnson A.P., Bhana R.H. et al. J Hosp Infect 1992; 22: 197-205.

51. Reish O., Ashkenazi S., Naor N. et al. Ibid 1993; 25: 287-294.

52. Moellering R.S. J Antimicrob Chemother 1993; 31: Suppl A: 1-8.

53. Goldfarb J. Pediatr Clin North Am 1995; 42: 717-735.

54. Schaad U.B. Monatsschr Kinderheilk 1995; 143: 1135-1144.

Антибактериальные препараты являются важным и часто главным компонентом комплексной терапии инфекционной патологии в акушерской практике, их рациональное и обоснованное применение в большинстве случаев определяет эффективность проводимого лечения, благоприятные акушерские и неонатальные исходы.

В России в настоящее время используется 30 различных групп антибиотиков, а число препаратов (без учета неоригинальных) приближается к 200. В США показано, что одними из самых часто назначаемых беременным препаратов являются антибиотики: 3 из 5 применяемых препаратов во время беременности являются антибактериальными средствами. Несмотря на то, что небольшое количество исследований выявили возможные негативные последствия антибактериальной терапии во время беременности, частота использования противомикробных препаратов при гестации остается в значительной степени неизвестной.

Необходимо сказать, что микробиологической особенностью гнойно-воспалительных заболеваний в акушерстве, гинекологии и неонатологии является полимикробная этиология данных заболеваний. Среди возбудителей гнойно-воспалительных заболеваний урогенитального тракта у беременных и родильниц доминируют условно-патогенные энтеробактерии (E. coli, Klebsiella spp., Proteus spp.), часто в ассоциации с облигатными анаэробами семейства бактероидов - Prevotella spp. и анаэробными кокками. В последние годы увеличилась роль энтерококков в этиологии гнойно-воспалительных заболеваний в акушерстве и неонатологии, что, по-видимому, связано с устойчивостью этих бактерий к цефалоспоринам, широко используемым в акушерской практике. Общие закономерности динамики этиологической структуры гнойно-воспалительных заболеваний позволяют сказать, что в каждом стационаре имеются определенная эпидемиологическая ситуация, биологические особенности возбудителей и их чувствительность к антибиотикам, в связи с чем необходим локальный мониторинг за видовым составом и антибиотикорезистентностью выделяемых микроорганизмов, определяющий выбор препаратов для профилактики и лечения заболевания.

Применение антибактериальных препаратов в акушерской практике имеет ряд особенностей, которые следует учитывать для эффективного лечения инфекционно-воспалительных заболеваний у беременных и родильниц. Антибактериальная терапия гнойно-воспалительных заболеваний в акушерстве и гинекологии может быть эффективной только с учетом их клиники, этиологии, патогенеза и ряда особенностей, возникающих в организме беременных женщин и определяющих правильный выбор и адекватное применение антибактериальных препаратов.

Во время беременности антибактериальная терапия должна быть направлена на ликвидацию инфекции, предупреждение заражения плода и новорожденного, а также развития послеродовых гнойно-воспалительных заболеваний. Рациональное и эффективное применение антибиотиков при беременности предполагает выполнение следующих условий:

  • необходимо использовать лекарственные средства только с установленной безопасностью применения при беременности, с известными путями метаболизма (критерии Управления по санитарному контролю качества пищевых продуктов и лекарственных средств США (Food and Drug Administration, FDA));
  • при назначении препаратов следует учитывать срок беременности, необходимо особенно тщательно подходить к назначению антимикробных препаратов в I триместре гестации;
  • в процессе лечения необходим тщательный контроль за состоянием матери и плода.

Антибактериальные препараты для использования в акушерской практике не должны обладать ни тератогенными, ни эмбриотоксическими свойствами; по мере возможности при максимальной эффективности быть малотоксичными, с минимальной частотой нежелательных лекарственных реакций. Ряд современных антибиотиков полностью удовлетворяет этим требованиям, в частности ингибиторозащищенные пенициллины, цефалоспорины и макролиды. Современная антибиотикотерапия отдельных нозологических форм начинается с эмпирического лечения, когда антибиотики вводят сразу после диагностирования заболевания с учетом возможных возбудителей и их чувствительности к препаратам. При выборе препарата для стартовой терапии учитывают известные литературные данные о его спектре действия на микроорганизмы, фармакокинетических особенностях, этиологической структуре данного воспалительного процесса, структуре антибиотикорезистентности. Перед началом терапии следует получить материал от больной для проведения микробиологического исследования.

С первых дней заболевания целесо­образно назначать антибиотик или комбинацию антибиотиков, максимально перекрывающих спектр возможных возбудителей заболевания. Для этого необходимо использовать комбинации синергидно действующих антибиотиков с дополняющим друг друга спектром действия или один препарат с широким спектром действия. При положительной динамике заболевания на основании результатов микробиологического исследования можно перейти на препараты более узкого спектра действия. После выделения возбудителя и определения его чувствительности к антимикробным препаратам при отсутствии клинического эффекта от начатой эмпирической терапии целесообразно продолжить лечение тем препаратом, к которому, по данным анализа, чувствителен возбудитель заболевания. Целенаправленная монотерапия часто бывает более эффективна, она выгоднее и в экономическом отношении. Комбинация антибактериальных препаратов показана при лечении заболеваний полимикробной этиологии с целью снижения возможности развития антибиотикорезистентности некоторых видов бактерий, для использования преимущества совместного действия антибиотиков, в т. ч. уменьшения дозы используемых препаратов и их побочного действия. Однако следует учитывать, что комбинированная терапия, как правило, менее выгодна экономически, чем монотерапия.

Антибактериальная терапия гнойно-воспалительных заболеваний в акушерстве и гинекологии должна быть системной, а не локальной. При системном лечении удается создать необходимую концентрацию антибиотиков в крови и очаге поражения, поддерживая ее требуемое время. Местное использование антибактериальных препаратов не позволяет достигнуть указанного эффекта, что в свою очередь может привести к селекции резистентных штаммов бактерий и недостаточной эффективности проводимой локальной антибиотикотерапии.

Антибиотикорезистентность микроорганизмов - одна из наиболее острых проблем современной медицины. Устойчивость микроорганизмов различают двух типов: первичную (видовую), обусловленную отсутствием мишени для лекарственного вещества, непроницаемостью мембраны клетки, ферментативной активностью возбудителя; и вторичную, приобретенную, - при использовании ошибочных доз препарата и др.

«Если современная медицина … в корне не пересмотрит отношение к использованию антибиотиков, рано или поздно наступит постантибиотическая эпоха, в которой многие распространенные инфекционные заболевания лечить станет нечем, и они вновь будут уносить множество человеческих жизней. Станут невозможными хирургия, трансплантология и многие другие отрасли медицины…» Эти горькие слова генерального директора Всемирной организации здравоохранения (ВОЗ), доктора Маргарет Чен, произнесенные во Всемирный день здоровья 2011 года, сегодня звучат еще актуальнее. Бактерии с лекарственной устойчивостью стремительно распространяются по планете. Все больше основных лекарственных средств перестает действовать на бактерии. Арсенал терапевтических средств стремительно сокращается. В наши дни в странах Европейского Союза, Норвегии и Исландии ежегодно около 25 тыс. человек умирают от инфекций, вызванных резистентными бактериями, причем большинство таких случаев наблюдается в больницах. Отечественная проблема лекарственной устойчивости микроорганизмов также расценена как угроза национальной безопасности, что подтверждает Всемирный экономический форум, включивший Россию в список стран с глобальным риском, поскольку 83,6% российских семей бесконтрольно принимают противомикробные препараты. По данным Минздрава РФ, около 16% россиян на сегодняшний момент имеют антибиотикорезистентность. При этом 46% населения России убеждены в том, что антибиотики убивают вирусы так же, как и бактерии, и поэтому назначают себе антибиотики при первых симптомах ОРВИ и гриппа. В настоящее время 60–80% врачей в РФ для перестраховки назначают антибиотики, не проверяя, будет ли он действовать на данный штамм бактерии у данного конкретного пациента. Мы собственными руками выращиваем монстров - супербактерии. Вместе с этим за последние 30 лет не было открыто ни одного нового класса антибиотиков, но за это же время резистентность некоторых возбудителей к отдельным антибиотикам полностью исключила возможность их применения в настоящее время.

Ключевая причина развития резистентности - ненадлежащее использование антимикробных препаратов, такое как:

  • применение препаратов без необходимости или же против заболевания, которое данный препарат не лечит;
  • прием препаратов без назначения медицинским специалистом;
  • несоблюдение предписанного режима приема антибиотиков (недостаточное или чрезмерное применение препаратов);
  • излишнее назначение антибиотиков врачами;
  • передача антибиотиков другим лицам или использование остатков предписанных лекарственных средств.

Устойчивость ставит под угрозу достижения современной медицины. Возвращение в доантибиотиковую эру может привести к тому, что многие инфекционные болезни в будущем станут неизлечимыми и неконтролируемыми. Во многих странах уже сейчас действуют государственные программы по борьбе с антибиотикорезистентностью.

Термин «супербактерия» (superbug) в последние годы стал все чаще появляться не только в профессиональной литературе, но и в СМИ для немедицинской аудитории. Речь идет о микроорганизмах, обладающих устойчивостью ко всем известным антибиотикам. Как правило, супербактериями оказываются внутрибольничные штаммы. Появление устойчивости к антибиотикам - это естественный биологический феномен, отражающий в действии эволюционные законы изменчивости и естественного отбора Чарльза Дарвина с той лишь разницей, что в качестве фактора «отбора» выступает деятельность человека, а именно - нерациональное применение антибиотиков. Устойчивость бактерий к антибиотикам развивается вследствие мутаций или в результате приобретения генов резистентности от других бактерий, уже имеющих устойчивость. Оказалось, что супербактерии отличает от остальных наличие фермента металло-b-лактамазы-1 Нью-Дели (NDM1; впервые он был обнаружен именно в Нью-Дели). Энзим обеспечивает резистентность к одному из наиболее действенных классов антибиотиков - карбапенемам. Как минимум каждый десятый штамм бактерий, несущих ген фермента NDM1, обладает дополнительным, пока не расшифрованным набором генов, обеспечивающим панрезистентность, - ни один антибиотик не способен воздействовать на этот микроорганизм ни бактерицидно, ни даже бактериостатически. Вероятность передачи гена NDM1 от бактерии к бактерии велика, так как он обнаружен в плазмидах - дополнительных внехромосомных носителях генетической информации. Эти формы жизни передают друг другу генетический материал горизонтально, без деления: они соединяются попарно цитоплазматическими мостиками, по которым из одной клетки в другую транспортируются кольцевые РНК (плазмиды). Разновидностей бактерий, включившихся в «суперпроцесс», становится все больше. Это в первую очередь возбудители анаэробной и аэробной раневой инфекции - клостридии, золотистый стафилококк (в некоторых странах устойчивыми к одному или многим антибиотикам являются более 25% штаммов этого инфекта), клебсиеллы, ацинетобактер, псевдомонады. А также самый частый патоген при воспалительных заболеваниях мочевыводящих путей - кишечная палочка.

Очень важно в борьбе с проблемой резистентности соблюдение правил назначения антимикотиков и антибиотиков. На фоне наступающих супербактерий стали появляться оптимистичные сообщения о том, что найдены способы борьбы с непобедимым врагом. Одни уповают на бактериофаги, другие - на покрытия с нанопорами, притягивающие любые бактерии за счет разности зарядов, третьи упорно ищут новые антибиотики.

К медицинским возможностям преодоления антибиотикорезистентности относят применение альтернативных способов лечения инфекционных процессов. В США, Европе и России происходит ренессанс таргетной терапии инфекций с помощью бактериофагов. Преимуществами фаготерапии является ее высокая специфичность, отсутствие подавления нормальной флоры, бактерицидное действие, в т. ч. в биопленках, саморепликация бактериофагов в очаге поражения, т. е. «автоматическое дозирование», отсутствие токсических и тератогенных эффектов, безопасность во время беременности, хорошая переносимость и очень низкий химиотерапевтический индекс. Назначение бактериофагов можно без преувеличений назвать высокоспецифичной антибактериальной терапией. Исторически единственными лекарственными средствами, подавляющими рост бактерий, были антибактериальные вирусы - бактериофаги. Препараты бактериофагов имеют хорошие перспективы в качестве альтернативы химиотерапевтической антибактериальной терапии. В отличие от антибиотиков они обладают строгой селективностью действия, не подавляют нормальную микрофлору, стимулируют факторы специфического и неспецифического иммунитета, что особенно значимо при лечении хронических воспалительных заболеваний или бактерионосительства.

Лечебно-профилактические бактериофаги содержат поликлональные вирулентные бактериофаги широкого диапазона действия, активные в т. ч. и в отношении бактерий, устойчивых к антибиотикам. Фаготерапия может успешно сочетаться с назначением антибиотиков.

Таким образом, в условиях формирования антимикробной резистентности, формирования устойчивых бактериальных пленок необходимость в новых альтернативных лечебных технологиях и антимикробных препаратах приобретает все большую значимость. Перспективы применения бактериофагов касаются не только антимикробной терапии, но и высокоточной диагностики, а также онкологии.

Но все это не должно успокаивать. Бактерии все равно умнее, быстрее и опытнее нас! Самый верный путь - тотальное изменение системы использования антибиотиков, ужесточение контроля, резкое ограничение доступности препаратов без рецепта, запрет на нелечебное использование антибиотиков в сельском хозяйстве. В США принята программа «Getsmart» («Соображай!»), ориентированная на разумное использование антибиотиков. Канадская программа «Do bugs need drugs?» («А нужны ли микробам лекарства?») сократила почти на 20% применение антибиотиков при инфекциях дыхательных путей. В России же пока проблема широкого и бесконтрольного использования антибиотиков обсуждается мало и не встречает активного противодействия медицинского сообщества и государственных структур, регулирующих обращение лекарственных средств.

Во втором квартале 2014 г. Всемирная организация здравоохранения опубликовала отчет об антибиотикорезистентности в мире. Это один из первых детальных докладов за последние 30 лет, касающийся столь актуальной глобальной проблемы. В нем проанализированы данные из 114 стран, в т. ч. России, на основании которых сделан вывод о том, что резистентность к антибиотикам на сегодняшний день отмечается уже во всех странах мира, независимо от уровня их благосостояния и экономического развития. Российская Федерация в 2014 г. со своей стороны стала инициатором подписания документа, в котором закреплено, что оценка ситуации с антибиотикорезистентностью в стране является национальным приоритетом. Сложившаяся ситуация имеет большое социально-экономическое значение и рассматривается как угроза национальной безопасности. Для преодоления данной проблемы в 2014 г. был успешно проведен ряд саммитов специалистов по антибактериальной терапии в Самаре, Екатеринбурге, Санкт-Петербурге и Новосибирске. Экспертный совет по здравоохранению при Комитете по социальной политике Совета Федерации активно занимается разработкой стратегических направлений по данной проблеме. Проведение саммитов подобного формата позволит оформить и консолидировать мнение ведущих специалистов во всех регионах РФ и донести наши идеи до Министерства здравоохранения и Правительства РФ. Всемирная организация здравоохранения рекомендует реальные меры по профилактике инфекций на самом начальном этапе - за счет улучшения гигиены и доступа к чистой воде, борьбы с инфекциями в медицинских учреждениях и вакцинации, а также обращает внимание на необходимость разработки новых лекарственных средств и диагностических тестов микробной резистентности, а также разработку национальных рекомендаций по рациональному использованию антибиотиков и национальных регламентов для контроля их соблюдения. Примером действенности этих мер являются национальные компании в странах Европы. Например, принятая в Таиланде программа «Антибиотики: разумный подход» направлена на ужесточение контроля за назначением и отпуском антибактериальных препаратов и адресована как врачам, так и пациентам. Первоначально были разработаны и внедрены изменения принципов назначения антибиотиков, что привело к снижению объема их потребления на 18–46%. Далее созданы децентрализованные сети, объединившие местных и центральных парт­неров, для дальнейшего расширения программы. В Австралии был принят комплексный пакет мер, направленных на повышение культуры потребления антибиотиков. Ключевая роль в сдерживании антимикробной резистентности с учетом многолетнего периода борьбы с ней в настоящее время отводится правительствам и политикам, а также обучению работников здравоохранения. Многие страны реализуют программы непрерывного обучения по рациональному применению антибиотиков.

Анализ литературных источников, отчетов по выполнению задач глобальной стратегии и резолюций по антибиотикорезистентности показал малое количество сведений об участии России в данном мировом процессе, чему свидетельство недостаток проведенных исследований в этой области. В связи с этим перед отечественным здравоохранением стоят задачи по созданию надежной системы надзора за применением антибиотиков, организации сети наблюдения за антибиотикорезистентностью, систематического сбора данных антибиотикограмм и распространении клинических последствий этого явления. Для преодоления устойчивости бактерий к антибиотикам необходим системный межведомственный подход и активные действия на национальном уровне.

Исследование выполнено за счет гранта Российского научного фонда (проект № 15–15–00109).

Литература

  1. Балушкина А. А., Тютюнник В. Л. Основные принципы антибактериальной терапии в акушерской практике // Русский медицинский журнал. Акушерство и гинекология. 2014, № 19. С. 1425–1427.
  2. Гуртовой Б. Л., Кулаков В. И., Воропаева С. Д. Применение антибиотиков в акушерстве и гинекологии. М.: Триада-Х, 2004. 176 c.
  3. Клинические рекомендации. Акушерство и гинекология. 4?е изд., перераб. и доп. / Под ред. В. Н. Серова, Г. Т. Сухих. М.: ГЭОТАР-Медиа, 2014. 1024 с.
  4. Козлов Р. С., Голуб А. В. Стратегия использования антимикробных препаратов как попытка ренессанса антибиотиков // Клин. микробиол. и антимикроб. химиотер. 2011. № 13 (4). С. 322–334.
  5. Кузьмин В. Н. Современные подходы к лечению воспалительных заболеваний органов малого таза // Consilium medicinum. 2009. № 6, т. 11, с. 21–23.
  6. Лекарственные средства в акушерстве и гинекологии / Под ред. акад. РАМН В. Н. Серова, акад. РАМН Г. Т. Сухих. 3-е изд., испр. и доп. М.: ГЭОТАР-Медиа, 2010, 320 с.
  7. Практическое руководство по антиинфекционной химиотерапии / Под ред. Л. С. Страчунского, Ю. Б. Белоусова, С. Н. Козлова. Изд-во НИИАХ СГМА, 2007. 384 с.
  8. Возрастающая угроза развития антимикробной резистентности. Возможные меры. Всемирная организация здравоохранения, 2013. 130 с.
  9. Adriaenssens N., Coenen S., Versporten A. et al. European surveillance of antimicrobial consumption (ESAC): outpatient antibiotic use in Europe (1997–2009) // J. Antimicrob. Chemother. 2011. Vol. 66 (6). P. 3–12.
  10. Broe A., Pottegаrd A., Lamont R. F. et al. Increasing use of antibiotics in pregnancy during the period 2000–2010: prevalence, timing, category, and demographics // BJOG. 2014. Vol. 121 (8). P. 988–996.
  11. Lapinsky S. E. Obstetric infections // Crit. Care Clin. 2013. Vol. 29 (3). P. 509–520.
  12. Antimicrobial resistance Global Report on surveillance 2014/226 Ap2.2 Guiding WHO documents for surveillance of AMR General and comprehensive recommendations. Available at: http://www.who.int/drugresistance/WHO_Global_ Strategy. htm/en/WHO Global Strategy for Containment of Antimicrobial Resistance.
  13. Reporting protocol: The European Antibiotic Resistance Surveillance Network (EARS-Net). Version 3, 2013. 43 с.
  14. Expert consultation on antimicrobial resistance/Report on a meeting Edited by: Dr Bernardus Ganter, Dr John Stelling. World Health Organization, 2011. Available at: http://www.euro.who.int/pubrequest .
  15. The bacterial challenge: time to react/European Centre for Disease Prevention and Control, Stockholm, 2009. Available at: http://www.ecdc.europa.eu.
  16. European strategic action plan on antibiotic resistance 2011–2016/Dr Guenael Rodier, Director, Division of Communicable Diseases, Health Security and Environment - Европейский региональный комитет ВОЗ, 61 сессия, 12–15.09.2011.
  17. Zsuzsanna Jakab. Prevention of health-care-associated infections (HAI) and antimicrobial resistance (AMR) in Europe WHO/V International Conference on Patient Safety, Healthcare Associated Infection and Antimicrobial Resistance, Madrid, Spain, 2010.
  18. Antibiotic use in eastern Europe: a cross-national database study in coordination with the WHO Regional Office for Europe // Lancet Infectious Diseases. 2014. Available at: http://dx.doi.org/10.1016/S1473–3099 (14)70071–4.
  19. Centers for Disease Control and Prevention. Sexually Transmitted Diseases // Treatment Guidelines. 2006. MMWR 2006; 55 (№ RR-11).
  20. Bonnin R. A., Poirel L., Carattoli A. et al. Characterization of an IncFIIplasmid encoding NDM-1 from Escherichia coli ST131 // PLoS One. 2012. № 7 (4). e34752. Epub 2012. Apr 12.
  21. Leski T., Vora G. J., Taitt C. R. Multidrug resistance determinantsfrom NDM-1?producing Klebsiellapneumoniae in the USA // Int. J. Antimicrob. Agents. 2012. № 17. Epub ahead of print.
  22. Tateda K. Antibiotic-resistant bacteria and new directions of antimicrobial chemotherapy // RinshoByori. 2012. № 60 (5). P. 443–448.
  23. Bolan G. A., Sparling P. F., Wasserheit J. N. The emerging threat of untreatable gonococcal infection // N. Engl. J. Med. 2012. № 9; 366 (6). P. 485–487.
  24. Preventing Hospital-Aquired Infection // Clinical Guidelines. 2000. Р. 42.
  25. Royal College of Obstetricians and Gynaecologists Bacterial Sepsis in Pregnancy // Green-top Guideline. 2012. № 64 a.
  26. Rivers E. P., Katranji M., Jaehne K. A. et al. Early interventions in severe sepsis and septic shock: a review of the evidence one decade later // Minerva Anestesiol. 2012. № 78 (6). P. 712–724.
  27. SOGC clinical practice guideline Antibiotic Prophylaxis // Obstetric Procedures. 2010. № 247.

Л. В. Адамян, доктор медицинских наук, профессор, академик РАН
В. Н. Кузьмин 1 , доктор медицинских наук, профессор
К. Н. Арсланян, кандидат медицинских наук
Э. И. Харченко, кандидат медицинских наук
О. Н. Логинова, кандидат медицинских наук

ГБУ ВПО МГМСУ им. А. И. Евдокимова МЗ РФ, Москва

Устойчивость бактериальных инфекций к антибиотикам уже влияет на систему мирового здравоохранения. Если действенные меры не будут приняты, то ближайшее будущее станет похоже на Апокалипсис: из-за резистентности к лекарствам погибнет больше людей, чем умирает сейчас от рака и диабета вместе взятых. Однако обилия новых антибиотиков на рынке так и не появляется. О том, какие есть способы улучшить работу уже использующихся антибиотиков, что такое «ахиллесова пята» бактерий и как личинки мух помогают ученым, читайте в этой статье. Также «Биомолекуле» удалось получить информацию от компании «Superbug solutions Ltd» об их открытии - антибактериальном агенте M13, который уже прошел первые испытания на животных. Его комбинация с известными антибиотиками помогает эффективно бороться против грамположительных и грамотрицательных бактерий (в том числе - антибиотикорезистентных), замедлять развитие устойчивости бактерий к антибиотикам и предотвращать образование биопленок.

Спецпроект о борьбе человечества с патогенными бактериями, возникновении устойчивости к антибиотикам и новой эре в антимикробной терапии.

Спонсор спецпроекта - - разработчик новых высокоэффективных бинарных антимикробных препаратов.

* - To make antibiotics great again (букв. «Сделаем антибиотики снова великими») - перефразированный слоган предвыборной кампании Дональда Трампа, действующего президента США, который, кстати, не стремится поддерживать науку и здравоохранение.

Что делать, если инфекции, которые человечество уже умеет лечить, выходят из-под контроля и вновь становятся опасными? Есть ли жизнь в постантибиотической эре? Именно о том, что мы можем вступить в эту эпоху, объявила в апреле 2014 года ВОЗ. Особую тревогу вызывает то, что антибиотикорезистентность уже стала одной из основных проблем для врачей во всем мире (об ее истоках подробно рассказано в первой части спецпроекта - «Антибиотики и антибиотикорезистентность: от древности до наших дней » ). Особенно это распространено в отделениях интенсивной терапии, где есть микроорганизмы с множественной лекарственной устойчивостью. Наиболее часто встречающиеся внутрибольничные патогены с резистентностью даже окрестили ESKAPE: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acetinobacter baumanni, Pseudomonas aeruginosa и Enterobacter spp . На английском языке тут получается каламбур: escape означает «побег», то есть это патогены, которые сбегают от антибиотиков . Трудности возникли в первую очередь именно с грамотрицательными бактериями, поскольку структура их оболочки затрудняет проникновение лекарств внутрь, а те молекулы, что уже смогли «прорваться», выкачиваются из бактерии обратно специальными молекулами-насосами .

В мире энтерококковая резистентность уже появилась к часто используемым ампициллину и ванкомицину . Устойчивость развивается даже к антибиотикам последнего поколения - даптомицину и линезолиду . Для обработки данных по России наши соотечественники уже создают карту чувствительности микроорганизмов к антибиотикам по всей стране, основываясь на исследованиях ученых из НИИ антимикробной химиотерапии НИИАХ и Межрегиональной ассоциации по клинической микробиологии и антимикробной химиотерапии МАКМАХ (данные постоянно обновляются ).

Профилактические меры уже не способны бороться с распространением антибиотикорезистентности, особенно в отсутствие новых лекарств . Новых же антибиотиков крайне мало - в том числе и потому, что интерес фармкомпаний к их разработкам снизился. Ведь кто будет делать бизнес на том препарате, который скоро может уйти с рынка, если и к нему разовьется устойчивость (а развиться она может в некоторых случаях всего за два года)? Это банально экономически невыгодно.

Несмотря на это, новые средства борьбы с бактериями нужны как никогда - страдают от сложившейся ситуации в первую очередь обычные люди. Устойчивость к антибиотикам уже влияет на заболеваемость, смертность и стоимость лечения пациентов. Этот процесс может затронуть любого: тратится больше средств на лечение, удлиняется время пребывания в больнице, а риски осложнений и летального исхода растут. Британцы оценивают глобальную ежегодную смертность минимум в 700 тысяч человек. По последним данным ВОЗ , в списке десяти ведущих причин смертности в мире три места занимают бактериальные инфекции и/или болезни, ими опосредованные. Это респираторные инфекции нижних дыхательных путей (3 место по данным последнего бюллетеня - за 2015 год - 3,19 млн человек), диарейные болезни (8 место - 1,39 млн человек) и туберкулез (9 место - 1,37 млн человек). От 56,4 млн случаев смерти во всем мире это составляет более 10%.

По оценкам масштабного исследования Review on Antimicrobial Resistance , заказанного британским правительством, будущее выглядит еще более пугающим. Мировая ежегодная смертность из-за антибиотикорезистентности достигнет к 2050 году десяти миллионов - суммарно это больше, чем сейчас смертей от онкологических заболеваний и сахарного диабета (8,2 миллиона и 1,5 миллиона соответственно - см. рис. 1). Затраты обойдутся миру в огромную сумму: до 3,5% от его общего ВВП или до $100 триллионов. В более же обозримой перспективе мировой ВВП уменьшится на 0,5% к 2020 году и на 1,4% к 2030 году.

Рисунок 1. Мировая смертность к 2050 году по расчетам британского исследования Review on Antimicrobial Resistance: от антибиотикорезистентности будет умирать больше людей, чем от онкологий и диабета вместе взятых.

«Если мы не сможем никак на это повлиять, то мы сталкиваемся с почти немыслимым сценарием, в котором антибиотики перестают работать, а мы возвращаемся в темные века медицины» , - прокомментировал Дэвид Кэмерон, действующий на тот момент премьер-министр Великобритании.

Другое видение: новые антибиотики, не подверженные резистентности

Как же справиться с устойчивостью патогенных бактерий к антибиотикам? Первая мысль, которая приходит в голову, - это сделать новые антибиотики, устойчивость к которым не будет развиваться. Этим ученые сейчас и занимаются: главной мишенью препаратов для них стала клеточная стенка бактерий.

Его Величество Липид-II

Рисунок 2. Биосинтез бактериальной клеточной стенки и мишени новых антибиотиков, нацеленных на разные звенья этого механизма.
Чтобы увидеть рисунок в полном размере, нажмите на него.

Один из самых известных антибиотиков, действующих на липид-II и использующихся в клинической практике, - это ванкомицин . Долгое время его монотерапия помогала бороться с энтерококками, но сейчас бактерии уже вырабатывают к нему резистентность (хронологию можно посмотреть в первой статье цикла ). Особенно в этом преуспели E. faecium .

Клеточная стенка: на абордаж!

Многие новые антибиотики нацелены на молекулы, включенные в процесс биосинтеза бактериальной клеточной стенки, - в том числе и на липид-II. Это и не удивительно: ведь именно клеточная стенка играет роль своего рода экзоскелета, защищает от угроз и стрессов извне, поддерживает форму, отвечает за механическую стабильность, предохраняет протопласт от осмотического лизиса и обеспечивает клеточную целостность. Для сохранения функции этого «защитного укрепления» у бактерий постоянно идет процесс его обновления.

Необходимый элемент клеточной стенки - пептидогликан . Это полимер из линейных гликановых нитей, сшитых через пептидные мостики. У грамотрицательных бактерий пептидогликановый слой тонкий и дополнительно покрыт наружной мембраной . У грамположительных бактерий он гораздо более толстый и выступает в роли основного компонента клеточной стенки. Кроме того, у них к пептидогликановому каркасу присоединяются поверхностные белки и вторичные полимеры: тейхоевые , липотейхоевые и тейхуроновые кислоты. У некоторых бактерий клеточная стенка может быть дополнительно окружена полисахаридной капсулой .

Для обеспечения жизнеспособности клеток во время роста и деления необходима четкая координация разрушения (гидролиза) и биосинтеза клеточной стенки. Выведение из строя даже одной шестеренки этого механизма грозит нарушением всего процесса. На это и уповают ученые, разрабатывая препараты с мишенями в виде молекул, вовлеченных в биосинтез бактериальной клеточной стенки .

Ванкомицин, подвинься

Новым антибиотиком, который может успешно заменить ванкомицин, считают тейксобактин . Публикация Кима Льюиса (Kim Lewis ) и коллег, где о нем впервые рассказывалось, прогремела в Nаture в 2015 году . Помог совершить это открытие разработанный учеными новый метод iChip : бактерии из почвы рассеивали по отдельным ячейкам на металлической пластине и затем возвращали в ту же почву и к тем же условиям окружающей среды, откуда бактерии «были родом». Так удавалось воспроизвести рост всех микроорганизмов, которые живут в почве, в естественных условиях (рис. 3).

Рисунок 3. Общий вид iChip (a ) и его составные части: центральная пластина (б ), в которую помещены растущие микроорганизмы, и полупроницаемые мембраны с каждой из сторон, отделяющие пластину от окружающей среды, а также две поддерживающие боковые панели (в ). Краткое описание метода - в тексте.
Чтобы увидеть рисунок в полном размере, нажмите на него.

Этот метод Фрэнсис Коллинз (Francis Collins ), директор Национального института здоровья США (NIH) (штат Мэриленд) назвал «гениальным», поскольку он расширяет возможности поиска новых антибиотиков в почве - одном из самых богатых источников этих лекарств . До iChip выделение новых потенциальных антибиотиков из бактерий грунта было ограничено из-за сложного процесса выращивания их в лаборатории: в искусственных условиях могут расти не более 0,5% бактерий.

Тейксобактин обладает более обширным действием, чем ванкомицин. Он связывает не только липид-II даже у ванкомицинорезистентных бактерий, но и липид-III, предшественника WTA - стеночной тейхоевой кислоты. Этим двойным ударом он может еще сильнее мешать синтезу клеточной стенки. Пока что в опытах in vitro токсичность тейксобактина для эукариот была низкой, а развитие резистентности бактерий к нему не выявлено. Однако публикаций о его действии против грамположительных энтерококков in vivo пока нет , а на грамотрицательные бактерии он не действует .

Раз липид-II - настолько хорошая мишень для антибиотиков, то неудивительно, что тейксобактин - отнюдь не единственная молекула, нацеленная на него. Другие перспективные соединения, борющиеся с грамположительными бактериями, - низин-подобные липопептиды . Сам низин - член семейства антимикробных пептидов лантибиотиков . Он связывает пирофосфатный фрагмент липида-II и формирует поры в бактериальной мембране, что приводит к лизису и гибели клеток. К сожалению, эта молекула обладает плохой стабильностью in vivo и по своим фармакокинетическим характеристикам не подходит для системного введения. По этой причине ученые «усовершенствовали» низин в нужном для них направлении, и свойства полученных низин-подобных липопептидов сейчас изучают в лабораториях .

Другая молекула с хорошими перспективами - это микробиспорицин , блокирующий биосинтез пептидогликана и вызывающий накопление его предшественника в клетке . Микробиспорицин называют одним из самых сильных из известных лантибиотиков, и он может воздействовать не только на грамположительные бактерии, но и на некоторых грамотрицательных патогенов.

Не липидом-II единым

Всем хорош липид-II, и особенно перспективны молекулы, нацеленные на неизменяемый пирофосфат в его составе. Однако изменением пептидной части липида-II бактерии добиваются развития резистентности к терапии. Так, препараты, нацеленные на нее (например, ванкомицин) перестают работать. Тогда вместо липида-II приходится искать в клеточной стенке другие мишени для лекарств. Это, например, ундекапренилфосфат - важнейшая часть пути биосинтеза пептидогликана . Сейчас изучают несколько ингибиторов ундекапренилфосфатсинтазы - они могут неплохо работать на грамположительных бактериях .

Антибиотики также можно нацеливать и на другие молекулы, например, на тейхоевые кислоты клеточных стенок (wall teichoic acid , WTA - она упоминалась выше), липотейхоевые кислоты (lipoteichoic acid , LTA ) и поверхностные белки с аминокислотным мотивом LPxTG (лейцин (L) - пролин (P) - любая аминокислота (X) - треонин (T) - глицин (G)) . Их синтез не является жизненно необходимым для энтерококков, в отличие от производства пептидогликана. Однако нокаут генов, вовлеченных в эти пути, приводит к серьезным нарушениям роста и жизнеспособности бактерий, а также снижает их вирулентность. Препараты, нацеленные на эти поверхностные структуры, могли бы не только вернуть чувствительность к обычным антибиотикам и предотвратить развитие резистентности, но и стать независимым классом лекарств.

Из совсем новых агентов можно назвать группу оксазолидинонов и ее представителей: линезолид, тедизолид, кадазолид. Эти синтетические антибиотики связывают молекулу 23S рРНК бактериальной рибосомы и мешают нормальному синтезу белков - без чего, конечно, микроорганизму приходится худо. Некоторые из них уже используют в клинике.

Так различные компоненты бактериальной клетки предоставляют ученым богатый выбор мишеней для разработки лекарств. Но определить, из каких «вырастет» продукт, готовый для рынка, сложно. Небольшая часть перечисленных - например, тедизолид - уже используется в клинической практике. Однако большинство еще находится на ранних стадиях разработки и даже не было проверено в клинических испытаниях - а без них конечные безопасность и эффективность препаратов трудно предсказать .

Личинки против бактерий

Внимание привлекают и другие антимикробные пептиды (АМП). На «Биомолекуле» уже выходили большой обзор об антимикробных пептидах и отдельная статья про лугдунин .

АМП называют «естественными антибиотиками», поскольку они вырабатываются в организмах животных. Например, различные дефензины - одна из групп АМП - встречаются у млекопитающих, беспозвоночных и растений . Только что вышло исследование, которое идентифицировало молекулу в маточном молочке пчел, которое успешно используют в народной медицине для заживления ран. Оказалось, что это как раз дефензин-1 - он способствует реэпителизации in vitro и in vivo .

Удивительно, что один из человеческих защитных пептидов - кателицидин - оказался крайне похожим на бета-амилоид, который долгое время «винили» в развитии болезни Альцгеймера .

Дальнейшие исследования природных АМП могут помочь найти новые лекарства. Возможно, они даже посодействуют в решении проблемы резистентности к лекарственным средствам - ведь к некоторым подобным соединениям, встречающимся в природе, не развивается резистентность. Например, только что обнаружили новый пептидный антибиотик при изучении Klebsiella pneumoniae subsp. ozaenae - оппортунистической человеческой бактерии, одного из возбудителей пневмонии . Его назвали клебсазолицин (klebsazolicin , KLB). Механизм его работы таков: он ингибирует синтез белка, связываясь с бактериальной рибосомой в «тоннеле» выхода пептида, пространства между субъединицами рибосомы. Его эффективность уже показали in vitro. Что примечательно, авторы открытия - русские исследователи из различных научных учреждений России и США.

Однако, пожалуй, из всего животного мира сейчас изучают больше всего насекомых. Сотни их видов широко использовали в народной медицине с древности - в Китае, Тибете, Индии, Южной Америке и других частях мира. Более того, даже сейчас можно услышать о «биохирургии» - лечении ран личинками Lucilia sericata или других мух. Как ни удивительно это современному больному, но раньше посадить личинок в рану было популярной терапией. При попадании в зону воспаления насекомые поедали отмершие ткани, стерилизовали раны и ускоряли их заживление .

Схожей темой сейчас активно занимаются исследователи из Санкт-Петербургского государственного университета под руководством Сергея Черныша - только без живых копошащихся личинок. Ученые изучают комплекс АМП, производимый личинками красноголовой синей падальницы (взрослая особь - на рис. 4) . Он включает в себя комбинацию пептидов из четырех семейств: дефензинов, цекропинов, диптерицинов и пролин-богатых пептидов. Первые нацелены преимущественно на мембраны грамположительных бактерий, вторые и третьи - на грамотрицательных, а последние направлены на внутриклеточные мишени. Возможно, данный микс возник в ходе эволюции мух как раз для того, чтобы повысить эффективность иммунного ответа и защитить от развития резистентности.

Рисунок 4. Красноголовая синяя падальница . Ее личинки, возможно, снабдят человечество антимикробными пептидами, не вызывающими резистентности.

Более того, подобные АМП оказываются эффективными против биопленок - колоний скрепленных между собой микроорганизмов, живущих на какой-либо поверхности. Именно такие сообщества ответственны за большинство бактериальных инфекций и за развитие многих серьезных осложнений у человека, включая хронические воспалительные заболевания. При возникновении в такой колонии резистентности к антибиотикам победить ее становится крайне трудно . Препарат, в который входят личиночные АМП, российские ученые назвали FLIP7 . Пока что эксперименты показывают, что он может с успехом пополнить ряды противомикробных препаратов. Подтвердят ли это будущие опыты, и выйдет ли это лекарство на рынок - вопрос будущего .

Новое - переработанное старое?

Помимо изобретения новых лекарств возникает и еще одна очевидная опция - изменить уже имеющиеся лекарства так, чтобы они заработали снова, либо поменять стратегию их применения. Конечно, ученые рассматривают оба эти варианта для того, чтобы, перефразируя слоган действующего президента США, to make antibiotics great again .

Серебряная пуля - или ложка?

Джеймс Коллинз (James Collins ) из Бостонского университета (штат Массачусетс, США) с коллегами исследует то, как повысить эффективность антибиотиков добавлением серебра в виде растворенных ионов. Этот металл использовали в антисептических целях тысячелетиями, и американская команда решила, что древний метод может помочь справиться с опасностью антибиотикорезистентности. Как утверждают исследователи, современный антибиотик при добавлении небольшого количества серебра может убить в 1000 раз больше бактерий!

Такой эффект достигается двумя путями.

Во-первых, добавление серебра повышает проницаемость мембраны для препаратов даже у грамотрицательных бактерий. Как рассказывает сам Коллинз, серебро оказывается не столько «серебряной пулей», убивающей «нечисть» - бактерии, - сколько серебряной ложкой, которая «помогает грамотрицательным бактериям принимать лекарства ».

Во-вторых, оно нарушает метаболизм микроорганизмов, в результате чего образуется слишком большое количество реактивных форм кислорода, которые, как известно, своим агрессивным поведением уничтожают все вокруг , .

Круговорот антибиотиков

Другой метод предлагает Мириам Барлоу (Miriam Barlow ) из Калифорнийского университета (город Мерсед, США). Часто по эволюционным причинам резистентность к одному антибиотику делает бактерии более уязвимыми к другим антибиотикам, утверждает их команда. Из-за этого при использовании уже существующих антибиотиков в точно определенном порядке можно вынудить популяцию бактерий развиваться в обратном направлении. Группа Барлоу изучала у E. coli определенный ген устойчивости, кодирующий бактериальный фермент β-лактамазу в различных генотипах . Для этого они создали математическую модель, которая выявила, что существует 60–70% вероятности возвращения к первоначальному варианту гена устойчивости. Иными словами, при правильном применении лечения бактерия вновь станет чувствительна к препаратам, против которых уже выработалась устойчивость. В некоторых больницах уже пытаются реализовать подобную идею «антибиотического цикла» со сменой лечения, но пока что, по словам исследовательницы , этим попыткам не хватало выверенной стратегии.

Клин клином - бактериальные методы

Еще одна интересная разработка, которая могла бы помогать антибиотикам в их нелегком труде, - так называемые «микробные технологии» (microbial technology ). Как выяснили ученые, заражение антибиотикорезистентными инфекциями зачастую может быть связано с нарушением функции кишечного микробиома - совокупности всех микроорганизмов в кишечнике .

В здоровом кишечнике проживает великое множество бактерий. При использовании антибиотиков это разнообразие уменьшается, и освободившиеся «места» могут занять патогены. Когда их становится слишком много, целостность кишечного барьера нарушается, и болезнетворные бактерии могут пробраться через него. Так, значительно повышается риск подхватить инфекцию изнутри и, соответственно, заболеть. Более того, возрастает и вероятность передачи резистентных болезнетворных микробов другим людям.

Чтобы бороться с этим, можно пытаться избавиться от конкретных патогенных штаммов, вызывающих хронические инфекции, например, с помощью бактериофагов, вирусов самих бактерий. Второй вариант - прибегнуть к помощи комменсальных бактерий, гасящих рост патогенов, и восстанавливать здоровую микрофлору кишечника.

Данный метод уменьшил бы риск побочных эффектов лечения и развития хронических проблем, связанных с нездоровым микробиомом. Также он мог бы продлить срок работы антибиотиков, поскольку не повышается опасность развития резистентности. Наконец, опасность заболеть снизилась бы как у самого пациента, так и у других людей. Однако пока трудно точно сказать, использование штаммов каких бактерий принесло бы бóльшую выгоду пациенту с точки зрения безопасности и эффективности. Более того, ученые сомневаются, удастся ли на современном уровне технологий наладить производство и культивирование микроорганизмов в нужных масштабах .

Кстати, интересно, что бактерии микробиома человека сами производят вещества, убивающие других бактерий. Их называют бактериоцинами , и о них «Биомолекула» рассказывала отдельно .

Агент M13 - что скрывается под кодовым именем?

Еще одна перспективная разработка, которая сможет дополнить уже существующие препараты, - фенольный липид под названием M13 , результат исследований российских ученых из компании Superbug Solutions Ltd , зарегистрированной в Британии.

Соединения, которые «прилагаются» к антибиотику и усиливают его действие, назвали потенциаторами , или потенцирующими веществами . Известно два основных механизма их работы.

Для исследователей потенциаторы являются очень перспективным объектом, поскольку борются с уже устойчивыми к лечению бактериями, при этом не требуют разработок новых антибиотиков и, напротив, могут вернуть в клинику старые антибиотики .

Несмотря на это, многие механизмы работы этого класса веществ до конца не изучены. Поэтому до их применения на практике - если до этого дойдет дело - потребуется ответить еще на множество вопросов, в том числе: как сделать их удар специфическим и не затронуть клетки самого пациента? Возможно, ученые смогут подобрать такие дозы потенциатора, которые будут воздействовать только на бактериальные клетки и не повлияют на эукариотические мембраны, но это смогут подтвердить или опровергнуть только будущие исследования.

Начало исследованиям, завершившимся разработкой М13, было положено в конце 80-х годов в (сейчас он входит в состав ФИЦ «Фундаментальные основы биотехнологии» РАН), когда под руководством Галины Эль-Регистан (сейчас - научного консультанта Superbug Solutions) в СССР открыли факторы дифференцировки (факторы d1 ) - внеклеточные метаболиты, регулирующие рост и развитие микробных популяций и образование покоящихся форм. По своей химической природе факторы d1 - это изомеры и гомологи алкилоксибензолов класса алкилрезорцинов , одной из разновидностей фенольных липидов. Выяснили, что они исполняют роль ауторегуляторов, выделяемых микроорганизмами в окружающую среду для координации взаимодействий клеток популяции между собой и для коммуникации с клетками других видов, входящих в состав ассоциации или участвующих в симбиозе.

Способов воздействия алкилрезорцинов на бактерии множество. На молекулярном уровне они модифицируют биополимеры . Так, в первую очередь страдает ферментный аппарат клетки. При связывании алкилрезорцинов с ферментами у последних изменяются конформация, гидрофобность и флуктуация доменов белковой глобулы. Оказалось, что в такой ситуации меняется не только третичная, но и четвертичная структура белков из нескольких субъединиц! Подобный результат добавления алкилрезорцинов приводит к модификации каталитической активности белков. Физико-химические характеристики неферментных белков также меняются. Кроме того, алкилрезорцины действуют и на ДНК. Они вызывают ответ клеток на стресс на уровне активности генетического аппарата, что приводит к развитию дистресса .

На субклеточном уровне алкилрезорцины нарушают нативную структуру мембраны клетки. Они увеличивают микровязкость мембранных липидов и ингибируют NADH-оксидазную активность мембран. Дыхательная активность микроорганизмов оказывается заблокированной. Целостность мембраны под воздействием алкилрезорцинов нарушается, и в ней появляются микропоры. Из-за того что по градиенту концентрации из клетки выходят ионы К + и Na + с гидратными оболочками, происходят дегидратация и сжатие клетки. В итоге, мембрана под воздействием этих веществ становится мало- или неактивной, а энергетический и конструктивный метаболизм клетки нарушается. Бактерии переходят в состояние дистресса. Их способность противостоять неблагоприятным факторам, включая воздействие антибиотиков, падает.

Как говорят ученые, похожий эффект на клетки достигается воздействием низких температур, к которому они не могут полностью адаптироваться. Это позволяет предположить, что к воздействию алкилрезорцинов бактерии тоже не смогут привыкнуть. В современном мире, когда антибиотикорезистентность беспокоит все научное сообщество, такое качество крайне важно.

Лучшего результата от применения алкилрезорцинов можно добиться при комбинировании одного или нескольких таких молекул с антибиотиками. По этой причине на следующем этапе эксперимента ученые Superbug Solutions изучали эффект комбинированного воздействия алкилрезорцинов и антибиотиков, различающихся по химическому строению и по мишеням в микробной клетке.

Сначала исследования провели на чистых лабораторных культурах непатогенных микроорганизмов. Так, минимальная ингибирующая концентрация (самая низкая концентрация препарата, которая полностью угнетает рост микроорганизмов в опыте) для антибиотиков семи различных химических групп против основных видов микроорганизмов снижалась в 10–50 раз в присутствии исследованных алкилрезорцинов. Подобный эффект продемонстрировали для грамположительных и грамотрицательных бактерий и грибов. Количество бактерий, выживающих после обработки ударной комбинацией высоких доз антибиотика + алкилрезорцина, оказалось ниже на 3–5 порядков по сравнению с действием антибиотика в одиночку.

Последующие опыты на клинических изолятах патогенных бактерий показали, что и тут комбинация работает: минимальная ингибирующая концентрация в некоторых случаях снижалась в 500 раз. Что интересно, усиление эффективности антибиотика наблюдали и у чувствительных к лекарству, и у резистентных бактерий. Наконец, вероятность образования антибиотикорезистентных клонов также снижалась на порядок. Иными словами, риск развития антибиотикорезистентности снижается или сводится на нет.

Так, разработчики установили, что эффективность лечения инфекционных заболеваний с помощью их схемы - «суперпуль» (superbullet ) - повышается, даже если болезнь была вызвана антибиотикорезистентными патогенами.

Изучив множество алкилрезорцинов, исследователи выбрали самый перспективный из них - М13. Соединение действует на клетки и бактерий, и эукариот, но в разных концентрациях. Резистентность к новому агенту также развивается гораздо медленнее, чем к антибиотикам. Основные механизмы его антимикробного действия, как и у остальных представителей этой группы, - воздействие на мембраны и ферментные и неферментные белки.

Выяснили, что сила эффекта добавления М13 к антибиотикам варьирует в зависимости как от вида антибиотика, так и от вида бактерий. Для лечения конкретного заболевания придется подбирать свою пару «антибиотик + М13 или иной алкилрезорцин». Как показали исследования in vitro , чаще всего М13 проявлял синергизм при взаимодействии с ципрофлоксацином и полимиксином. В целом же совместное действие отмечали реже в случае грамположительных бактерий, чем в случае грамотрицательных.

Помимо этого, использование М13 минимизировало образование антибиотикорезистентных мутантов патогенных бактерий. Полностью предотвратить их появление нельзя, однако можно существенно, на порядки, снизить вероятность их появления и повысить чувствительность к антибиотику, с чем и справился агент компании Superbug Solutions.

По итогам опытов «в пробирке» можно заключить, что перспективнее всего выглядят эксперименты по применению комбинации М13 и антибиотиков против грамотрицательных бактерий, что и было изучено в дальнейшем.

Так, провели эксперименты in vivo для определения, изменяется ли эффективность лечения зараженных мышей комбинацией М13 с известными антибиотиками - полимиксином и амикацином. В качестве патогена выбрали летальную клебсиеллёзную инфекцию, вызванную Klebsiella pneumoniae . Как показали первые результаты, эффективность антибиотиков в комбинации с М13 действительно повышается. При лечении мышей М13 и антибиотиком (но не одним антибиотиком) бактеримию в селезенке и крови не наблюдали. В дальнейших опытах на мышах подберут самые эффективные комбинации М13 и других алкилрезорцинов с определенными антибиотиками для лечения конкретных инфекций. Затем проведут стандартные этапы исследования токсикологии и клинические испытания 1 и 2 фаз.

Сейчас компания оформляет патент на разработку и надеется на будущее ускоренное одобрение препарата от FDA (американского Управления по контролю за продуктами и лекарствами). Superbug Solutions запланировала и будущие эксперименты по изучению алкилрезорцинов. Разработчики собираются и дальше развивать свою платформу по поиску и созданию новых комбинированных антимикробных препаратов. При этом многие фармкомпании фактически отказались от подобных разработок, и сегодня больше других заинтересованы в подобных исследованиях именно ученые и конечные потребители. Их и намерена привлекать для поддержки и развития компания Superbug Solution и в результате создать некое комьюнити вовлеченных и заинтересованных людей. Ведь кому же, как не прямому потребителю потенциального препарата, выгоден его выход на рынок?

Что же дальше?

Хотя прогнозы по борьбе с антибиотикорезистентностью инфекций пока не очень утешительные, мировое сообщество пытается принять меры, чтобы избежать той мрачной картины, которую рисуют нам эксперты. Как было рассмотрено выше, многие научные группы занимаются разработкой новых антибиотиков или тех препаратов, которые в комбинации с антибиотиками могли бы успешно убивать инфекции.

Казалось бы, перспективных разработок сейчас много. Доклинические опыты дают надежду, что однажды на фармацевтический рынок все-таки «дойдут» новые препараты. Однако уже ясно, что вклада только разработчиков потенциальных антибактериальных лекарств мало. Необходимо также заняться разработкой вакцин от определенных патогенных штаммов, пересмотреть методы, используемые в животноводстве, улучшить гигиену и методы диагностики заболеваний, рассказывать общественности о наличии проблемы и, самое главное, - объединить усилия по борьбе с ней (рис 5). О многом этом шла речь в первой части цикла .

Неудивительно, что Инициатива по инновационным лекарственным средствам (Innovative Medicines Initiative , IMI ) Европейского союза, которая помогает сотрудничеству фармпромышленности с ведущими научными центрами, объявила о запуске программы «Новые лекарства против плохих микробов» (New Drugs 4 Bad Bugs , ND4BB ). «Программа IMI против резистентности к антибиотикам - это гораздо больше, чем клиническая разработка антибиотиков , - рассказывает Ирен Норстедт (Irene Norstedt ), исполняющая обязанности директора IMI. - Она охватывает все области: от фундаментальной науки о резистентности к антибиотикам (в том числе и о внедрении антибиотиков внутрь бактерий) через ранние стадии открытия и разработки лекарств и до клинических испытаний и создания общеевропейской группы по клиническим испытаниям» . По ее словам, большинству вовлеченных в разработку лекарств сторон, включая промышленность и ученых, уже ясно: проблемы такого масштаба, как антимикробная резистентность, могут быть решены только путем всеобщего сотрудничества. Программа предусматривает и поиск новых способов избежать устойчивости к антибиотикам .

Среди других инициатив - «Глобальный план действий по устойчивости к противомикробным препаратам» и ежегодная кампания «Антибиотики: используйте осторожно!» по повышению осведомленности о проблеме медицинского персонала и общественности . Похоже, чтобы избежать постантибиотической эры, небольшой вклад может потребоваться от любого. Готовы ли вы к этому?

«Супербаг Солюшенс» - спонсор спецпроекта по антибиотикорезистентности

Компания Superbug Solutions UK Ltd. («Супербаг Солюшенс» , Великобритания) - одна из ведущих компаний, занимающихся уникальными исследованиями и разработками решений в области создания высокоэффективных бинарных антимикробных препаратов нового поколения. В июне 2017 года «Супербаг Солюшенс» получила сертификат от крупнейшей в истории Европейского Союза программы по исследованиям и инновациям «Горизонт 2020», удостоверяющий, что технологии и разработки компании являются прорывными в истории развития исследований по расширению возможностей применения антибиотиков.

19 сентября 2017 года вышел доклад всемирной организации здравоохранения, посвященный проблеме тяжёлой ситуации с антибиотиками на нашей планете.

Мы постараемся детально поговорить о проблеме, которую нельзя недооценивать, ведь она, является серьезной угрозой для жизни человека. Это проблема называется антибиотикорезистентность.

По данным всемирной организации здравоохранения ситуация на планете принципиально одинакова во всех странах. То есть антибиотикорезистентность развивается повсеместно и неважно, будь то США или Россия.

Когда мы говорим устойчивость к антибиотикам, то надо понимать что это своего рода жаргон. Под антибиотикорезистентности понимается не только устойчивость к антибиотикам но и к вирусным препаратам, антигрибковым препаратам и препаратам против простейших.

Так откуда берется антибиотикоустойчивость?

Всё довольно просто. Люди, живут на планете, хозяевами которой три с половиной млрд лет являются микроорганизмы. Эти организмы воюют друг с другом, пытаются выжить. И конечно, в процессе эволюции, они выработали колоссальное количество способов, как защищаться от любого типа нападение.

Источником устойчивых микроорганизмов в нашем быту, является медицина и сельское хозяйство. Медицина потому что, вот уже 3 поколения людей, начиная с 1942 года, применяют антибиотики для лечения все возможных заболеваний. Конечно, без антибиотиков пока никак не обойтись. Любая операция, любое лечение инфекции требует назначения антибактериального препарата. С каждым приемом такого препарата, часть микроорганизмов погибает, но остаётся выжившая часть. Вот она-то и передает следующему поколению резистентность. И со временем появляются супербактерии или сверх инфекты - микроорганизмы которые невосприимчивы практически к любому антибиотику. Такие супербактерии уже появились в нашем обиходе и к сожалению, собирают богатый урожай жертв.

Второй источник проблемы, это сельское хозяйство. От 80 до 90% всех антибиотиков применяется не в медицине и не для людей. Антибиотиками практически кормят крупный рогатый скот, иначе нет привеса и животное болеет. По-другому быть не может, потому что мы собираем миллионы голов скота в ограниченном пространстве, держим их в не натуральных условиях и кормим их теми кормами, которая природа не предусматривает для данного вида организма. Антибиотики являются своего рода гарантией того, что скотт не будет болеть и будет набирать положенный вес. В итоге десятки тысяч тонн антибиотиков оказываются в природе и там, начинается отбор устойчивых штаммов, которые к нам возвращаются с продуктами питания.

Конечно, не всё так просто и дело не только в медицине и в сельском хозяйстве. Здесь очень большую роль играет туризм и глобальная экономика (когда продукты питания, какое-то сырьё, удобрение, перевозится из одной страны в другую). Все это делает невозможным как-то заблокировать распространение супербактерий.

По сути, мы живём в одной большой деревни, поэтому какой-то супермикроб, возникший в одной стране, становится большой проблемой и в других странах.

Стоит затронуть такую важную причину развития антибиотикорезистентности, как применение препаратов без назначения врача. По американской статистике примерно 50% случаи в приёме антибиотиков относятся к вирусным инфекциям. То есть, любая простуда и человек начинает применять антибактериальный препарат. Мало того что это не эффективно (антибиотики на вирусы не действуют!!!), так это еще и приводит к возникновению более устойчивых видов инфекций.

И наконец, проблема, которая для многих покажется удивительной. У нас не осталось новых антибиотиков. Фармацевтическим компаниям просто неинтересно разрабатывать новые антибактериальные препараты. Разработка, как правило, занимает до 10 лет тяжёлой работы, много инвестиций и в итоге, даже если этот препарат попал на рынок, это не даёт никаких гарантий что через год или два к нему не появятся резистентность.

На самом деле в нашем медицинском арсенале, находится антибиотики, разработанные ещё много лет назад. Принципиально новых антибиотиков в нашем медицинском обиходе не появлялось уже 30 лет. То, что мы имеем - это модифицированные и переработанные старые версии.

И вот, перед нами возникает достаточно серьёзная ситуация. Мы самонадеянно взялись соревноваться с гигантским количеством микроорганизмов, у которых есть свое понимание как им жить, как им выживать и как им реагировать на самые неожиданные обстоятельства. Тем более что наши антибиотики, даже самые химические, не очень большая новость для микромира. Это потому что, в своей массе антибиотики, это и есть опыт самого микромира. Мы подглядываем как микробы борются друг с другом и делая выводы, создаем антибактериальный препарат (например пенициллин). Но даже сам изобретатель антибиотика, сэр Александр Флеминг, предупреждал: что активное применение антибиотиков непременно вызовет возникновение устойчивых к ним штаммов микроорганизмов.

В связи с вышесказанным, можно вывести простые правила личной безопасности при использовании антибактериальных препаратов:

  1. Не торопитесь применять антибиотик, если вы или кто-то из ваших близких закашлял.
  2. Применяйте только те антибиотики, которые вам назначил врач.
  3. Покупайте лекарственные препараты только в аптеках.
  4. Если начали принимать препарат, обязательно пройдите весь курс лечения.
  5. Не запасайтесь антибиотиками, у каждого лекарства есть свой срок годности.
  6. Не делитесь антибиотиками с другими людьми. Каждому человеку индивидуально подбирается тот или иной препарат.