Заболевания, эндокринологи. МРТ
Поиск по сайту

Виды микроскопов: описание, основные характеристики, назначение. Чем электронный микроскоп отличается от светового? Строение микроскопа Строение микроскопа 5

РАЗДЕЛ: ЦИТОЛОГИЯ

ТЕМА:«УСТРОЙСТВО СВЕТОВОГО МИКРОСКОПА И ТЕХНИКА МИКРОСКОПИРОВАНИЯ».

Форма организации учебного процесса: практическое занятие.

Место проведения: учебная комната.

Цель занятия: на основании знания устройства светового микроскопа освоить технику микроскопирования и приготовления временных препаратов.

Значимость изучаемой темы

Световая микроскопия – один из объективных методов биологических, медико-биологических и медицинских дисциплинах. Умение правильно пользоваться микроскопом, грамотно оценивать, интерпретировать, документировать (зарисовывать) наблюдаемую микроскопическую картину являются обязательным условием успешного освоения материала на практических занятиях по биологии, гистологии, патологической анатомии, микробиологии.

В результате работы на практическом занятии студент должен

знать:

· устройство светового микроскопа;

· правила работы со световым микроскопом.

уметь:

· работать со световым микроскопом на малом и большом увеличениях;

· готовить временный препарат;

· оформлять зарисовки микроскопических препаратов;

· оформлять протокол занятия.

Оснащение занятия:

Компьютер;

Проектор;

Презентация Power Point по теме;

Световой микроскоп;

Бинокуляр;

Микропрепараты (любые);

Предметные стекла;

Покровные стекла;

Чашки Петри;

Скальпель;

Марлевые салфетки;

Фильтровальная бумага;

Спиртовый раствор йода;

Луковица.

ПРАКТИЧЕСКАЯ ЧАСТЬ ЗАНЯТИЯ

РАБОТА № 1. УСТРОЙСТВО СВЕТОВОГО МИКРОСКОПА.

Задание 1:

  • внимательно прочитайте содержание работы № 1 и изучите устройство светового микроскопа.

Рассмотрите основные части микроскопа: механическую, оптическую, осветительную.

К механической части относятся: штатив, предметный столик, тубус, револьвер, макро- и микрометрические винты.

Штатив состоит из массивного подковообразного основания, придающего микроскопу необходимую устойчивость. От середины основания вверх отходит тубусодержатель, изогнутый почти под прямым углом, к нему прикреплен тубус, расположенный наклонно.

На штативе укреплен предметный столик с круглым отверстием в середине. На столик помещают рассматриваемый объект (отсюда название «предметный»). На столике имеются два зажима, или клеммы, неподвижно фиксирующие препарат. По бокам столика расположены два винта – препаратовыделители, при вращении которых столик передвигаются вместе с объективом в горизонтальной плоскости. Через отверстие в середине столика проходит пучок света, позволяющий рассматривать объект в проходящем свете.

На боковых сторонах штатива, ниже предметного столика, найдите два винта, служащие для передвижения тубуса. Макрометрический винт, или кремальера, имеет большой диск и при вращении поднимает или опускает тубус для ориентировочной наводки на фокус. Микрометрический винт, имеющий наружный диск меньшего диаметра, при вращении перемещает тубус незначительно и служит для точной наводки на фокус. Вращать микрометрический винт можно только на полоборота в обе стороны.

Оптическая часть микроскопа представлена окулярами и объективами.

Окуляр (от лат. oculus - глаз) находится в верхней части тубуса и обращен к глазу. Окуляр представляет собой систему линз, заключенных в металлическую гильзу цилиндрической формы. По цифре на верхней поверхности окуляра можно судить о кратности его увеличения (Х 7, Х 10, Х 15). Окуляр можно вынимать из тубуса и заменять по мере надобности другим.

На противоположной стороне найдите вращающуюся пластинку, или револьвер (от лат. revolvo - вращаю), в которой имеется 3 гнезда для объективов. Как и окуляр, объектив представляет собой систему линз, заключенных в общую металлическую оправу. Объектив ввинчивается в гнездо револьвера. Объективы также имеют различную кратность увеличения, которая обозначается цифрой на его боковой поверхности. Различают: объектив малого увеличения (Х 8), объектив большого увеличения (Х 40) и имерсионный объектив, используемый для изучения наиболее мелких объектов (Х 90).

Общее увеличение микроскопа равно увеличению окуляра, умноженному на увеличение объектива. Таким образом, световой микроскоп имеет максимальную кратность увеличения 15 Х 90 или может максимально увеличивать в 1350 раз.

Осветительная часть микроскопа состоит из зеркала, конденсора и диафрагмы.

Зеркало укреплено на штативе ниже предметного столика и благодаря подвижному креплению его можно вращать в любом направлении. Это дает возможность использовать источники света, расположенные в различных направлениях по отношению к микроскопу, и направлять пучок света на объект через отверстие в предметном столике. Зеркало имеет две поверхности: вогнутую и плоскую. Вогнутая поверхность сильнее концентрирует световые лучи и поэтому используется при более слабом, искусственном освещении.

Конденсор находится между зеркалом и предметным столиком, он состоит двух-трех линз, заключенных в общую оправу. Пучок света, отбрасываемый зеркалом, проходит через систему линз конденсора. Меняя положение конденсора (выше, ниже), можно изменить интенсивность освещенности объекта. Для перемещения конденсора служит винт, расположенный кпереди от макро и микровинтов. При опускании конденсора освещенность уменьшается, при поднимании – увеличивается. Диафрагма, вмонтированная в нижнюю часть конденсора, также служит для регуляции освещения. Эта диафрагма состоит из ряда пластинок, расположенных по кругу и частично перекрывающих друг друга таким образом, что в центре остается отверстие для прохождения светового пучка. С помощью специальной ручки, расположенной на конденсоре с правой стороны, можно менять положение пластинок диафрагмы относительно друг друга и таким образом уменьшать или увеличивать отверстие и, следовательно, регулировать освещенность.

Основная задача, которая решается механической частью, достаточно проста - обеспечение крепления и движения оптической части микроскопа и объекта.

Предметные столики предназначены для крепления в определенном положении объекта наблюдения. Основные требования связаны с жесткостью крепления самих столиков, а также с фиксацией и координацией (ориентацией) объекта (препарата) относительно объектива.

Стол крепится на специальном кронштейне. Для удобства работы столики конструктивно выполняются неподвижными и подвижными.

Неподвижные столики обычно применяются в самых простейших моделях микроскопов. Движение объекта на них осуществляется с помощью рук наблюдателя для быстроты перемещения при экспрес-диагностике. Препарат закрепляется на столике с помощью пружинящих лапок или с помощью специального устройства препаратодержателя.

Для механического перемещения или вращения объекта под объективом микроскопа применяются подвижные (рис. 32) столики. Препарат фиксируется и перемещается с помощью препаратоводителя. Координатное перемещение объекта по двум осям X-Y (или только по одной X) осуществляется с помощью рукоятки (обычно сдвоенной коаксиальной) вручную или от электродвигателя (обычно шагового). Последние носят название "сканирующие столики. На столе вдоль направляющих по осям X и Y расположены шкалы с нониусами для контроля положения и линейного измерения перемещения в горизонтальной плоскости.

Фокусировочный механизм: грубая и точная фокусировка. Фокусировочный механизм обеспечивает движение стола или объектива для установки определенного расстояния между объектом наблюдения и оптической частью микроскопа. Это расстояние гарантирует резкое изображение объекта. "Наводка на резкость" осуществляется двумя регулировками – грубой и точной. Каждая регулировка – это свой механизм и своя рукоятка. Рукоятки управления могут быть разнесены или совмещены, но обязательно располагаются по бокам микроскопа: справа и слева попарно.



Обычно грубая фокусировка (регулировка) осуществляется парой больших рукояток (рис. 31), расположенных по обе стороны от штатива. Они совершают "черновое" движение объектива к объекту или от него. Минимальная величина перемещения составляет 1 мм за один оборот. При этом грубая фокусировка является рабочей при тех исследованиях, где увеличение микроскопа не более 400 х.

Точная фокусировка (регулировка) осуществляется парой небольших рукояток, которые обычно за один оборот придвигают стол или объектив к объекту на 0,01 -0,05 мм. Величина перемещения за один оборот зависит от конструктивных особенностей микроскопов различных фирм.

Как правило, на одну из рукояток точной фокусировки наносится шкала, которая позволяет контролировать вертикальное перемещение микроскопа относительно объекта наблюдения.

Например, отечественный микроскоп МИКМЕД-2 имеет грубое фокусировочное перемещение до 30 мм, при этом один оборот рукоятки обеспечивает перемещение на 2,5 мм, точная фокусировка осуществляется в пределах 2,5 мм при одном обороте на 0,25 мм, на одну из рукояток точной фокусировки нанесена шкала с ценой деления 0,002 мм.

Функциональное назначение фокусировочного перемещения значительно больше, чем обычно ему отводится. Без точной фокусировки не обойтись:

Если увеличение микроскопа более 400 х;

При работе с иммерсионными объективами;

При работе с объективами, которые не дают резкого изображения по всему наблюдаемому полю;

Если на всем видимом поле объект неровный по толщине или имеет объем.

Совмещение (коаксиальное расположение) обеих рукояток значительно упрощает работу, одновременно усложняя конструкцию и удорожая микроскоп.

Узел крепления и перемещения конденсора. Конденсор , как самостоятельный узел, является стыкующим элементом между осветительной системой (источником света) и микроскопом (объективом и визуализирующей частью).

Узел крепления конденсора расположен под предметным столиком. Имеет вид кронштейна с гнездом. Предназначен для установки конденсора, его фиксации и центрировки, т. е. перемещения в горизонтальной плоскости перпендикулярно оптической оси микроскопа.

Кроме того, узел имеет направляющую для фокусировочного движения (перемещения) конденсора по вертикали, вдоль оптической оси.

Каким бы образом конденсор ни устанавливался в гнезде - сбоку, сверху или снизу, - он жестко крепится с помощью стопорного винта, который предотвращает его выпадение, с одной стороны, и обеспечивает центрированное положение в процессе работы, с другой.

Центровочные винты обеспечивают совмещение осветительного пучка от источника света и оптической оси микроскопа (настройка освещения по Келеру). Это очень важный этап настройки освещения в микроскопе, влияющий на равномерность освещения и точность воспроизведения объекта, а также на контраст и разрешение элементов в изображении объекта.

Фокусировка (настройка по высоте) конденсора осуществляется с помощью ручки на кронштейне и, так же как центрировка, влияет на работу всей оптической части микроскопа.

Конденсор может быть неподвижным. Обычно подобная конструкция присуща учебным микроскопам . Эти микроскопы применяются при рутинной работе, где не требуется применение дополнительных методов контрастирования, и объект не требует более детального исследования.

Узел крепления объективов. Существует несколько типов крепления объективов в микроскопе:

Ввинчивание объектива непосредственно в тубус (как правило, на учебных «школьных» микроскопах);

"салазки" - крепление объективов с помощью специального безрезьбового устройства (направляющей);

Револьверное устройство с несколькими гнездами.

В настоящее время самым распространенным типом крепления объективов является револьверное устройство (револьверная головка) (рис. 33).

Узел крепления объективов в виде револьверного устройства выполняет следующие функции:

Смену увеличения в микроскопе за счет вращения головки, в каждое гнездо которой ввинчивается объектив определенного увеличения;

Фиксированную установку объектива в рабочее положение;

гарантированное центрирование оптической оси объектива относительно оптической оси микроскопа в целом, включая осветительную систему.

Револьверное устройство может быть 3-х, 4-х, 5-ти, 6-ти или 7-гнездным в зависимости от класса сложности микроскопа и решаемых им задач.

В микроскопах, где применяется дифференциально-интерференционный контраст, в револьверной головке над гнездом имеется один или несколько пазов для установки направляющей с призмой.

В учебных микроскопах объективы обычно крепятся таким образом, чтобы замена их была затруднена (т. е. делаются несъемными).

Порядок следования объективов должен строго соблюдаться: от меньшего увеличения к большему, при этом движение револьверной головки осуществляется по часовой стрелке.

Как правило, при сборке микроскопов производится операция подбора объективов - комплектация . Это позволяет не терять изображение объекта из поля зрения при переходе от одного увеличения к другому.

И еще одно условие должно обеспечивать револьверное устройство - парфокальность . Гнездо револьвера, вернее, его внешняя поверхность, является материальной базовой поверхностью для отсчета высоты объектива и длины тубуса объектива (микроскопа). Объектив должен быть ввинчен в гнездо таким образом, чтобы между ним и револьверной головкой не было зазора. При этом обеспечиваются расчетные значения всех сборочных оптических элементов в микроскопе, а также конструктивное и технологическое их обеспечение. Это значит, что если будет получено резкое изображение объекта с одним объективом, то при переходе к другому в пределах глубины резкости объектива резкое изображение объекта сохраняется.

Парфокальность в комплекте объективов обеспечивается конструкцией микроскопа и технологией изготовления. При отсутствии этого условия при переходе от одного объектива к другому требуется значительная подфокусировка по резкости изображения.

Узел крепления окуляров (тубуса) в современных микроскопах представляет собой кронштейн с гнездом, в которое устанавливаются различные виды насадок: визуальные насадки (монокулярные и бинокулярные (рис. 34)), фотометрические и спектрофотометрические , микрофото - и адаптерные устройства для видеосистем . Кроме того, в это гнездо могут быть установлены: насадки сравнения , рисовальные аппараты , экранные насадки , а также осветители падающего света . Фиксация устройств осуществляется стопорным винтом.

Невозможно представить модель современного микроскопа без системы документирования . Практически это бинокулярная насадка с выходом на фото- или телесистему.

Конструктивно узел крепления окуляров может быть снабжен дополнительным оптико-механическим модулем сменного увеличения, получившего название "Оптовар" (Optovar). Как правило, он имеет несколько ступеней увеличения от меньшего единицы до 2,5 х, но есть варианты и с одной ступенью. Обычно модуль располагается между визуальной насадкой и револьверным устройством, обеспечивая тем самым дополнительное увеличение, как для визуального канала, так и для фотовыхода. Конечно, наибольшее значение это имеет для фотоканала.

ОПТИКА МИКРОСКОПА

Оптические узлы и принадлежности обеспечивают основную функцию микроскопа – создание увеличенного изображения рассматриваемого объекта с достаточной степенью достоверности по форме, соотношению размеров и цвету. Кроме того, оптика микроскопа должна обеспечивать такое увеличение, контраст и разрешение элементов, которые позволят произвести наблюдение, анализ и измерение, соответствующие требованиям методик клинико-диагностической практики.

Основными оптическими элементами микроскопа являются: объектив , окуляр , конденсор . Вспомогательными элементами – осветительная система , оптовар, визуальные и фотонасадки с оптическими адаптерами и проективами.

Объектив микроскопа предназначен для создания увеличенного изображения рассматриваемого объекта с требуемым качеством, разрешением и цветопередачей.

Классификация объективов достаточно сложна и связана с тем, для изучения каких объектов предназначен микроскоп, зависит от требуемой точности воспроизведения объекта с учетом разрешающей способности и цветопередачи в центре и по полю видения.

Современные объективы имеют сложную конструкцию, количество линз в оптических системах доходит до 7-13. При этом расчеты базируются в основном на стеклах с особыми свойствами и кристалле флюорите или стеклах, аналогичных ему по основным физико-химическим свойствам.

По степени исправления аберраций выделяют несколько типов объективов:

Исправленные в спектральном диапазоне:

Монохроматические объективы (монохроматы) рассчитаны для применения в узком спектральном диапазоне, практически они хорошо работают в одной длине волны. Аберрации исправлены в узком спектральном диапазоне. Монохроматы были широко распространены в 60-х годах в период развития фотометрических методов исследования и создания аппаратуры для исследований в ультрафиолетовой (УФ) и инфракрасной (ИК)областях спектра.

Ахроматические объективы (ахроматы) рассчитаны для применения в спектральном диапазоне 486-656 нм. В этих объективах, устранены сферическая аберрация, хроматическая аберрация положения для двух длин волн (зеленого и желтого участков спектра), кома, астигматизм и частично сферохроматическая аберрация.

Изображение объекта имеет несколько синевато-красноватый оттенок. Технологически объективы достаточно просты – небольшое количество линз, технологичные для изготовления марки стекол, радиуса, диаметры и толщины линз. Относительно дешевые. Входят в комплект микроскопов, которые предназначены для рутинных работ и обучения.

В связи с простотой конструкции (всего 4 линзы) ахроматы имеют следующие достоинства:

Высокий коэффициент светопропускания, что необходимо при проведении фотометрических измерений и люминесцентных исследованиях;

Обеспечение трудно сочетаемых при расчете условий: большое рабочее расстояние при работе объектива с покровным стеклом, явно превышающим стандартнуютолщину и при этом - желание сохранения разрешающей способности, что необходимо при работе на инвертированных микроскопах.

К недостаткам можно отнеси то, что полевые аберрации в чистых ахроматах исправлены чаще всего на 1/2-2/3 поля, т.е. без перефокусировки возможно наблюдение в пределах 1/2-2/3 по центру видения. Это увеличивает время наблюдения, т.к. требует постоянной перефокусировки на край поля.

Апохроматические объективы . Уапохроматов спектральная область расширена и ахроматизация выполняется для трех длин волн. Кроме хроматизма положения, сферической аберрации, комы и астигматизма, достаточно хорошо исправляются также вторичный спектр и сферохроматическая аберрация.

Развитие этот тип объективов получил после того, как в оптическую схему объектива стали вводится линзы из кристаллов и специальных стекол. Количество линз в оптической схеме апохромата доходит до 6. По сравнению с ахроматами, апохроматы обычно имеют повышенные числовые апертуры, дают четкое изображение и точно передают цвет объекта.

Полевые аберрации в чистых апохроматах исправлены даже меньше чем у ахроматов, чаще всего на 1/2 поля, т.е. без перефокусировки возможно наблюдение в пределах 1/2 по центру видения.

Апохроматы обычно применяются при особо тонких и важных исследованиях и особенно там, где требуется качественная микрофотография.

Что ни говорите, а микроскоп является одним из важнейших инструментов ученых, одним из главных их оружий в познании окружающего мира. Как появился первый микроскоп, какая история микроскопа от средних веков и до наших дней, какое строение микроскопа и правила работы с ним, ответы на все эти вопросы Вы найдете в нашей статье. Итак, приступим.

История создания микроскопа

Хотя первые увеличительные линзы, на основе которых собственно и работает световой микроскоп, археологи находили еще при раскопках древнего Вавилона, тем не менее, первые микроскопы появились в Средневековье. Что интересно, среди историков нет согласия по поводу того, кто первым изобрел микроскоп. Среди кандидатов на эту почтенную роль такие известные ученые и изобретатели как Галилео Галилей, Христиан Гюйгенс, Роберт Гук и Антонии ван Левенгук.

Стоит также упомянуть итальянского врача Г. Фракосторо, который еще в далеком 1538 году первым предложил совместить несколько линз, чтобы получить больший увеличительный эффект. Это еще не было созданием микроскопа, но стало предтечей его возникновения.

А в 1590 году некто Ханс Ясен, голландский мастер по созданию очков заявил, что его сын – Захарий Ясен — изобрел первый микроскоп, для людей Средневековья такое изобретение было сродни маленькому чуду. Однако, ряд историков сомневается в том, является ли Захарий Ясен истинным изобретателем микроскопа. Дело в том, что в его биографии немало темных пятен, в том числе пятен и на его репутации, так современники обвиняли Захарию в фальшивомонетчестве и краже чужой интеллектуальной собственности. Как бы там ни было, но точно узнать был ли Захарий Ясен изобретателем микроскопа или нет, мы, к сожалению, не можем.

А вот репутация Галилео Галилея в этом плане безупречна. Этого человека мы знаем, прежде всего, как, великого астронома, ученого, гонимого католической церковью за свои убеждения о том, что Земля вращается вокруг , а не наоборот. Среди важных изобретений Галилея — первый телескоп, с помощью которого ученый проник своим взором в космические сферы. Но сфера его интересов не ограничивалась лишь звездами и планетами, ведь микроскоп, это по сути тот же телескоп, но только наоборот. И если с помощью увеличительных линз можно наблюдать за далекими планетами, то почему бы не обратить их мощь в другое направление – изучить то, что находится у нас «под носом». «Почему бы и нет», — наверное, подумал Галилей, и вот, в 1609 году он уже представляет широкой публике в Академии деи Личеи свой первый составной микроскоп, который состоял из выпуклой и вогнутой увеличительных линз.

Старинные микроскопы.

Позднее, спустя 10 лет, голландский изобретатель Корнелиус Дреббель усовершенствовал микроскоп Галилея, добавив в него еще одну выпуклую линзу. Но настоящую революцию в развитии микроскопов совершил Христиан Гюйгенс, голландский физик, механик и астроном. Так он первым создал микроскоп с двухлинзовой системой окуляров, которые регулировались ахроматически. Стоит заметить, что окуляры Гюйгенса применяются и по сей день.

А вот знаменитый английский изобретатель и ученый Роберт Гук навеки вошел в историю науки, не только как создатель собственного оригинального микроскопа, но и как человек, сделавший при его помощи великое научное открытие. Именно он первым увидел через микроскоп органическую клетку, и предположил, что все живые организмы состоят из клеток, этих мельчайших единиц живой материи. Результаты своих наблюдений Роберт Гук опубликовал в своем фундаментальном труде – Микрографии.

Опубликованная в 1665 году Лондонским королевским обществом, эта книга тут же стала научным бестселером тех времен и произвела подлинный фурор в научном сообществе. Еще бы, ведь в ней имелись гравюры с изображением увеличенной в микроскоп блохи, вши, мухи, клетки растения. По сути, этот труд представлял собой удивительное описание возможностей микроскопа.

Интересный факт: термин «клетка» Роберт Гук взял потому, что клетки растений ограниченные стенами напомнили ему монашеские кельи.

Так выглядел микроскоп Робета Гука, изображение из «Микрографии».

И последним выдающимся ученым, который внес свой вклад в развитие микроскопов, был голландец Антонии ван Левенгук. Вдохновленный трудом Роберта Гука, «Микрографией», Левенгук создал свой собственный микроскоп. Микроскоп Левенгука, хотя и обладал лишь одной линзой, но она была чрезвычайно сильной, таким образом, уровень детализации и увеличения у его микроскопа был лучшим на то время. Наблюдая в микроскоп живую природу, Левенгук сделал множество важнейших научных открытий в биологии: он первым увидел эритроциты, описал бактерии, дрожжи, зарисовал сперматозоиды и строение глаз насекомых, открыл инфузории и описал многие их формы. Работы Левенгука дали огромный толчок к развитию биологии, и помогли привлечь внимание биологов к микроскопу, сделали его неотъемлемой частью биологических исследований, аж по сей день. Такая в общих чертах история открытия микроскопа.

Виды микроскопов

Далее с развитием науки и техники стали появляться все более совершенные световые микроскопы, на смену первому световому микроскопу, работающему на основе увеличительных линз, пришел микроскоп электронный, а затем и микроскоп лазерный, микроскоп рентгеновский, дающие в разы более лучший увеличительный эффект и детализацию. Как же работают эти микроскопы? Об этом дальше.

Электронный микроскоп

История развития электронного микроскопа началась в 1931 году, когда некто Р. Руденберг получил патент на первый просвечивающий электронный микроскоп. Затем в 40-х годах прошлого века появились растровые электронные микроскопы, достигшие своего технического совершенства уже в 60-е годы прошлого века. Они формировали изображение объекта благодаря последовательному перемещению электронного зонда малого сечения по объекту.

Как работает электронный микроскоп? В основе его работы лежит направленный пучок электронов, ускоренный в электрическом поле и выводящий изображение на специальные магнитные линзы, этот электронный пучок намного меньше длины волн видимого света. Все это дает возможность увеличить мощность электронного микроскопа и его разрешающую способность в 1000-10 000 раз по сравнению с традиционным световым микроскопом. Это главное преимущество электронного микроскопа.

Так выглядит современный электронный микроскоп.

Лазерный микроскоп

Лазерный микроскоп представляет собой усовершенствованную версию электронного микроскопа, в основе его работы лежит лазерный пучок, позволяющий взору ученого наблюдать живые ткани на еще большой глубине.

Рентгеновский микроскоп

Рентгеновские микроскопы используются для исследования очень маленьких объектов, имеющих размеры сопоставимые с размерами рентгеновской волны. В основе их работы лежит электромагнитное излучение с длиной волны от 0,01 до 1 нанометра.

Устройство микроскопа

Конструкция микроскопа зависит от его вида, разумеется, электронный микроскоп будет отличаться своим устройством от светового оптического микроскопа или от рентгеновского микроскопа. В нашей статье мы рассмотрим строение обычного современного оптического микроскопа, который является наиболее популярным как среди любителей, так и профессионалов, так как с их помощью можно решить множество простых исследовательских задач.

Итак, прежде всего в микроскопе можно выделить оптическую и механическую части. К оптической части относится:

  • Окуляр – это та часть микроскопа, которая прямо связана с глазами наблюдателя. В самых первых микроскопах он состоял из одной линзы, конструкция окуляра в современных микроскопах, разумеется, несколько сложнее.
  • Объектив – практически самая важная часть микроскопа, так как именно объектив обеспечивает основное увеличение.
  • Осветитель – отвечает за поток света на исследуемый объект.
  • Диафрагма – регулирует силу светового потока, поступающего на исследуемый объект.

Механическая часть микроскопа состоит из таких важных деталей как:

  • Тубус, он представляет собой трубку, в которой заключается окуляр. Тубус должен быть прочным и не деформироваться, так как иначе пострадают оптические свойства микроскопа.
  • Основание, оно обеспечивает устойчивость микроскопа во время работы. Именно на него крепится тубус, держатель конденсатора, ручки фокусировки и другие детали микроскопа.
  • Револьверная головка – применяется для быстрой смены объективов, в дешевых моделях микроскопов отсутствует.
  • Предметный столик – это то место, на котором размещается исследованный объект или объекты.

А тут на картинке изображено более подробное строение микроскопа.

Правила работы с микроскопом

  • Работать с микроскопом необходимо сидя;
  • Перед работой микроскоп необходимо проверить и протереть от пыли мягкой салфеткой;
  • Установить микроскоп перед собой немного слева;
  • Начинать работу стоит с малого увеличения;
  • Установить освещение в поле зрения микроскопа, используя электроосветитель или зеркало. Глядя одним глазом в окуляр и пользуясь зеркалом с вогнутой стороной, направить свет от окна в объектив, а затем максимально и равномерно осветить поле зрения. Если микроскоп снабжен осветителем, то подсоединить микроскоп к источнику питания, включить лампу и установить необходимую яркость горения;
  • Положить микропрепарат на предметный столик так, чтобы изучаемый объект находился под объективом. Глядя сбоку, опускать объектив при помощи макровинта до тех пор, пока расстояние между нижней линзой объектива и микропрепаратом не станет 4-5 мм;
  • Передвигая препарат рукой, найти нужное место, расположить его в центре поля зрения микроскопа;
  • Для изучения объекта при большом увеличении, сначала нужно поставить выбранный участок в центр поля зрения микроскопа при малом увеличении. Затем поменять объектив на 40 х, поворачивая револьвер, так чтобы он занял рабочее положение. При помощи микрометренного винта добиться хорошего изображения объекта. На коробке микрометренного механизма имеются две черточки, а на микрометренном винте — точка, которая должна все время находиться между черточками. Если она выходит за их пределы, ее необходимо возвратить в нормальное положение. При несоблюдении этого правила, микрометренный винт может перестать действовать;
  • По завершении работы с большим увеличением, установить малое увеличение, поднять объектив, снять с рабочего столика препарат, протереть чистой салфеткой все части микроскопа, накрыть его полиэтиленовым пакетом и поставить в шкаф.

Функциональные части микроскопа

Микроскоп включает в себя три основные функциональные части :

1. Осветительная часть

Предназначена для создания светового потока, который позволяет осветить объект таким образом, чтобы последующие части микроскопа предельно точно выполняли свои функции. Осветительная часть микроскопа проходящего света расположена за объектом под объективом в прямых микроскопах и перед объектом над объективом в инвертированных . Осветительная часть включает источник света (лампа и электрический блок питания) и оптико-механическую систему (коллектор, конденсор, полевая и апертурная регулируемые/ирисовые диафрагмы).

2. Воспроизводящая часть

Предназначена для воспроизведения объекта в плоскости изображения с требуемым для исследования качеством изображения и увеличения (т.е. для построения такого изображения, которое как можно точнее и во всех деталях воспроизводило бы объект с соответствующим оптике микроскопа разрешением, увеличением, контрастом и цветопередачей). Воспроизводящая часть обеспечивает первую ступень увеличения и расположена после объекта до плоскости изображения микроскопа.

Воспроизводящая часть включает объектив и промежуточную оптическую систему.

Современные микроскопы последнего поколения базируются на оптических системах объективов , скорректированных на бесконечность. Это требует дополнительно применения так называемых тубусных систем, которые параллельные пучки света, выходящие из объектива , «собирают» в плоскости изображения микроскопа .

3. Визуализирующая часть

Предназначена для получения реального изображения объекта на сетчатке глаза, фотопленке или пластинке, на экране телевизионного или компьютерного монитора с дополнительным увеличением (вторая ступень увеличения).

Визуализирующая часть расположена между плоскостью изображения объектива и глазами наблюдателя (камерой , фотокамерой). Визуализирующая часть включает монокулярную, бинокулярную или тринокулярную визуальную насадку с наблюдательной системной (окулярами , которые работают как лупа).

Кроме того, к этой части относятся системы дополнительного увеличения (системы оптовара/смены увеличения); проекционные насадки, в том числе дискуссионные для двух и более наблюдателей; рисовальные аппараты; системы анализа и документирования изображения с соответствующими адаптерными (согласующими) элементами.

Конструктивно-технологические части

Современный микроскоп состоит из следующих конструктивно-технологических частей:

оптической;

механической;

электрической.

Механическая часть микроскопа

Основным конструктивно-механическим блоком микроскопа является штатив . Штатив включает в себя следующие основные блоки: основание и тубусодержатель .

Основание представляет собой блок, на котором крепится весь микроскоп . В простых микроскопах на основание устанавливают осветительные зеркала или накладные осветители. В более сложных моделях осветительная система встроена в основание без или с блоком питания.

Разновидности оснований микроскопа

основание с осветительным зеркалом;

так называемое «критическое» или упрощенное освещение;

освещение по Келлеру.

узел смены объективов , имеющий следующие варианты исполнения -- револьверное устройство, резьбовое устройство для ввинчивания объектива , «салазки» для безрезьбового крепления объективов с помощью специальных направляющих;

фокусировочный механизм грубой и точной настройки микроскопа на резкость -- механизм фокусировочного перемещения объективов или столиков;

узел крепления сменных предметных столиков;

узел крепления фокусировочного и центрировочного перемещения конденсора;

узел крепления сменных насадок (визуальных, фотографических, телевизионных, различных передающих устройств).

В микроскопах могут использоваться стойки для крепления узлов (например, фокусировочный механизм в стереомикроскопах или крепление осветителя в некоторых моделях инвертированных микроскопов).

Чисто механическим узлом микроскопа является предметный столик , предназначенный для крепления или фиксации в определенном положении объекта наблюдения. Столики бывают неподвижные, координатные и вращающиеся (центрируемые и нецентрируемые).

Специальные виды микроскопии

Темнопольная. Используют специальный конденсор, выделяющий контрастирующие структуры неокрашенного материала. Темнопольная микроскопия позволяет наблюдать живые объекты. Наблюдаемый объект выглядит как освещенный на темном поле. При этом лучи от осветителя падают на объект сбоку, а в линзы микроскопа поступают только рассеянные лучи.

Фазово-контрастная микроскопия позволяет изучать живые и неокрашенные объекты. При прохождении света через окрашенные объекты изменяется амплитуда световой волны, а при прохождении света через неокрашенные – фаза световой волны, что и используют для получения высококонтрастного изображения в фазово-контрастной и интерференционной микроскопии.

Поляризационная микроскопия - формирование изображения неокрашенных анизотропных структур (например, коллагеновые волокна и миофибриллы).

Интерференционная микроскопия объединяет принципы фазово-контрастной и поляризационной микроскопии и применяется для получения контрастного изображения неокрашенных объектов.

Люминесцентная микроскопия применяется для наблюдения флюоресцирующих (люминесцирующих) объектов. В люминесцентном микроскопе свет от мощного источника проходит через два фильтра. Один фильтр задерживает свет перед образцом и пропускает свет длины волны, возбуждающей флюоресценцию образца. Другой фильтр пропускает свет длины волны, излучаемой флуоресцирующим объектом. Таким образом, флюоресцирующие объекты поглощают свет одной длины волны и излучают в другой области спектра.

Флюоресцирующие красители (флюоресцин, родамин и др.) избирательно связываются со специфическими макромолекулами.

Электронная микроскопия

Теоретическое разрешение просвечивающего ЭМ составляет 0,002 нм. Реальное разрешение современных микроскопов приближается к 0,1 нм. Для биологических объектов разрешение ЭМ на практике составляет 2 нм.

Просвечивающий ЭМ состоит из колонны, через которую в вакууме проходят электроны, излучаемые катодной нитью. Пучок электронов, фокусируемый кольцевыми магнитами, проходит через подготовленный образец. Характер рассеивания электронов зависит от плотности образца. Проходящие через образец электроны фокусируют, наблюдают на флюоресцирующем экране и регистрируют при помощи фотопластинки.

Сканирующий ЭМ применяют для получения трехмерного изображения поверхности исследуемого объекта.

Метод сколов ( замораживания-скалывания) применяют для изучения внутреннего строения клеточных мембран. Клетки замораживают при температуре жидкого азота в присутствии криопротектора и используют для изготовления сколов. Плоскости скола проходят через гидрофобную середину двойного слоя липидов. Обнаженную внутреннюю поверхность мембран оттеняют платиной, полученные реплики изучают в сканирующем электронном микроскопе.

2.Основные части светового микроскопа их назначение и устройство
Разрешающая способность микроскопа дает раздельное изображение двух близких друг другу линий. Невооруженный человеческий глаз имеет разрешающую способность около 1/10 мм или 100 мкм. Лучший световой микроскоп примерно в 500 раз улучшает возможность человеческого глаза, т. е. его разрешающая способность составляет около 0,2 мкм или 200 нм.

Разрешающая способность и увеличение не одно и тоже. Если с помощью светового микроскопа получить фотографии двух линий, расположенных на расстоянии менее 0,2 мкм, то, как бы не увеличивать изображение, линии будут сливаться в одну. Можно получить большое увеличение, но не улучшить его разрешение.

Различают полезное и бесполезное увеличения. Под полезным понимают такое увеличение наблюдаемого объекта, при котором можно выявить новые детали его строения. Бесполезное - это увеличение, при котором, увеличивая объект в сотни и более раз, нельзя обнаружить новых деталей строения. Например, если изображение, полученное с помощью микроскопа (полезное!), увеличить еще во много раз, спроецировав его на экран, то новые, более тонкие детали строения при этом не выявятся, а лишь соответственно увеличатся размеры имеющихся структур.

В учебных лабораториях обычно используют световые микроскопы, на которых микропрепараты рассматриваются с использованием естественного или искусственного света. Наиболее распространены световые биологические микроскопы: БИОЛАМ, МИКМЕД, МБР (микроскоп биологический рабочий), МБИ (микроскоп биологический исследовательский) и МБС (микроскоп биологический стереоскопический). Они дают увеличение в пределах от 56 до 1350 раз. Стереомикроскоп (МБС) обеспечивает подлинно объемное восприятие микрообъекта и увеличивает от 3,5 до 88 раз.

В микроскопе выделяют две системы: оптическую и механическую К оптической системе относят объективы, окуляры и осветительное устройство (конденсор с диафрагмой и светофильтром, зеркало или электроосветитель).

Механическая часть микроскопа.

основание (штатив) или массивная ножка (1);
коробка с микромеханизмом (2) и микровинтом (3);

податочный механизм для грубой наводки – макровинт или кремальера (8);
предметный столик (4);

винты (5, 6, 12, 13);

головка (9); револьвер (10); клеммы; тубус (11);

дуга или тубусодержвтель(7);
Кремальера (макровинт) – служит для приблизительной «грубой» установки на фо-

Механическая система микроскопа состоит из подставки, коробки с микрометренным механизмом и микрометренным винтом, тубуса, тубусодержателя, винта грубой наводки, кронштейна конденсора, винта перемещения конденсора, револьвера, предметного столика.

Подставка - это основание микроскопа.

Коробка с микрометренным механизмо м, построенном на принципе взаимодействующих шестерен, прикреплена к подставке неподвижно. Микрометренный винт служит для незначительного перемещения тубусодержателя, а, следовательно, и объектива на расстояния, измеряемые микрометрами. Полный оборот микрометренного винта передвигает тубусодержатель на 100 мкм, а поворот на одно деление опускает или поднимает тубусодержатель на 2 мкм. Во избежание порчи микрометренного механизма разрешается крутить микрометренный винт в одну сторону не более чем на половину оборота.

Тубус или трубка - цилиндр , в который сверху вставляют окуляры. Тубус подвижно соединен с головкой тубусодержателя, его фиксируют стопорным винтом в определенном положении. Ослабив стопорный винт, тубус можно снять.

Револьвер предназначен для быстрой смены объективов, которые ввинчиваются в его гнезда. Центрированное положение объектива обеспечивает защелка, расположенная внутри револьвера.

Винт грубой наводки используют для значительного перемещения тубусодержателя, а, следовательно, и объектива с целью фокусировки объекта при малом увеличении.

Предметный столик предназначен для расположения на нем препарата. В середине столика имеется круглое отверстие, в которое входит фронтальная линза конденсора. На столике имеются две пружинистые клеммы - зажимы, закрепляющие препарат.

Кронштейн конденсора подвижно присоединен к коробке микрометренного механизма. Его можно поднять или опустить при помощи винта, вращающего зубчатое колесо, входящее в пазы рейки с гребенчатой нарезкой.