Заболевания, эндокринологи. МРТ
Поиск по сайту

Этот способ определения увеличения трубы называется способом галилея. Оптические приборы с телескопическим ходом лучей: труба кеплера и труба галилея Труба галилея

Определение увеличения зрительной трубы с помощью рейки. Если навести трубу на близкостоящую рейку,то можно сосчитать, сколько делений рейки N, видимой невооруженным глазом, соответствуют n делениям рейки, видимой в трубу. Для этого нужно смотреть поочередно в трубу и на рейку, проектируя деления рейки из поля зрения трубы на рейку, видимую невооруженным глазом.

Высокоточные геодезические приборы имеют сменные окуляры с разными фокусными расстояниями, и смена окуляра позволяет изменять увеличение трубы в зависимости от условий наблюдений.

Увеличение трубы Кеплера равно отношению фокусного расстояния объектива к фокусному расстоянию окуляра.

Обозначим через γ угол, под которым видны n делений в трубу и N делений без трубы (рис.3.8). Тогда одно деление рейки видно в трубу под углом:

α = γ / n,

а без трубы – под углом:

β = γ / N.

Рис.3.8

Отсюда: V = N / n .

Увеличение трубы можно приближенно вычислить по формуле:

V = D / d, (3.11)

где D – входной диаметр объектива;

d – диаметр выходного отверcтия трубы (но не диаметр окуляра).

Поле зрения трубы. Полем зрения трубы называют участок пространства, видимый в трубу при неподвижном ее положении. Поле зрения измеряют углом ε, вершина которого лежит в оптическом центре объектива, а стороны касаются краев отверстия диафрагмы (рис.3.9). Диафрагма диаметром d1 устанавливается внутри трубы в фокальной плоскости объектива.Из рисунка 3.11 видно, что:

откуда

Рис.3.9.

Обычно в геодезических приборах принимают d1 = 0.7 * fок, тогда в радианной мере:

ε = 0.7 / V.

Если ε выразить в градусах, то:

ε = 40o / V . (3.12)

Чем больше увеличение трубы, тем меньше ее угол зрения. Так, например, при V = 20x ε = 2o, а при V = 80x ε = 0.5o.

Разрешающая способность трубы оценивается по формуле:

Например, при V = 20x ψ = 3″; под таким углом виден предмет размером 5 см на расстоянии 3.3 км; человеческий глаз может видеть этот предмет на расстоянии всего 170 м.

Сетка нитей. Правильным наведением зрительной трубы на предмет считается такое, когда изображение предмета находится точно в центре поля зрения трубы. Чтобы исключить субъективный фактор при нахождении центра поля зрения, его обозначают сеткой нитей. Сетка нитей – это в простейшем случае два взаимно перпендикулярных штриха, нанесенных на стеклянную пластинку, которая крепится к диафрагме трубы. Сетка нитей бывает разных видов; на рис.3.10 показаны некоторые из них.

Сетка нитей имеет исправительные винты: два боковых (горизонтальных) и два вертикальных. Линия, соединяющая центр сетки нитей и оптический центр объектива, называется визирной линией или визирной осью трубы.



Рис.3.10

Установка трубы по глазу и по предмету. При наведении трубы на предмет нужно одновременно четко видеть в окуляре сетку нитей и изображение предмета. Установкой трубы по глазу добиваются четкого изображения сетки нитей; для этого передвигают окуляр относительно сетки нитей, вращая рифленое кольцо на окуляре. Установка трубы по предмету называется фокусированием трубы. Расстояние до рассматриваемых предметов бывает разным, и согласно формуле (3.6) при изменении a расстояние b до его изображения также меняется. Чтобы изображение предмета при рассматривании его в окуляр было четким, оно должно располагаться в плоскости сетки нитей. Передвигая окулярную часть трубы вдоль главной оптической оси, изменяют расстояние от сетки нитей до объектива до тех пор, пока оно станет равным b.

Трубы, у которых фокусирование выполняется путем изменения расстояния между объективом и сеткой нитей, называются трубами с внешней фокусировкой. Такие трубы имеют большую и притом переменную длину; они негерметичны, поэтому внутрь них попадают пыль и влага; на близкие предметы они вообще не фокусируются. Зрительные трубы с внешней фокусировкой в современных измерительных приборах не применяются

Более совершенными являются трубы с внутренней фокусировкой (рис.3.11); в них применяется дополнительная подвижная рассеивающая линза L2, образующая вместе с объективом L1 эквивалентную линзу L. При перемещении линзы L2 изменяется расстояние между линзами l и, следовательно, изменяется фокусное расстояние f эквивалентной линзы. Изображение предмета, находящееся в фокальной плоскости линзы L, также перемещается вдоль оптической оси, и когда оно попадает на плоскость сетки нитей становится четко видным в окуляре трубы. Трубы с внутренней фокусировкой короче; они герметичны и позволяют наблюдать близкие предметы;в современных измерительных приборах применяются в основном такие зрительные трубы.

Не слишком удаленные предметы?

Допустим, что мы хотим хорошенько разглядеть какой-то относительно близко расположенный предмет. С помощью трубы Кеплера это вполне возможно. В этом случае изображение, даваемое объективом, получится немного дальше задней фокальной плоскости объектива. А окуляр следует расположить так, чтобы это изображение оказалось в передней фокальной плоскости окуляра (рис. 17.9) (если мы хотим вести наблюдения, не напрягая зрения).

Задача 17.1. Труба Кеплера установлена на бесконечность. После того как окуляр этой трубы отодвинули от объектива на расстояние Dl = 0,50 см, через трубу стали ясно видны предметы, расположенные на расстоянии d . Определить это расстояние, если фокусное расстояние объектива F 1 = 50,00 см.

того как объектив передвинули, это расстояние стало равно

f = F 1 + Dl = 50,00 см + 0,50 см = 50,50 см.

Запишем формулу линзы для объектива:

Ответ : d » 51 м.

СТОП! Решите самостоятельно: В4, С4.

Труба Галилея

Первая зрительная труба была сконструирована все-таки не Кеплером, а итальянским ученым, физиком, механиком и астрономом Галилео Галилеем (1564–1642) в 1609 г. В трубе Галилея в отличие от трубы Кеплера окуляр представляет собой не собирающую, а рассеивающую линзу, поэтому и ход лучей в ней более сложный (рис. 17.10).

Лучи, идущие от предмета АВ , проходят через объектив – собирающую линзу О 1 , после чего они образуют сходящиеся пучки лучей. Если предмет АВ – бесконечно удаленный, то его действительное изображение ab должно было бы получиться в фокальной плоскости объектива. Причем это изображение получилось бы уменьшенным и перевернутым. Но на пути сходящихся пучков стоит окуляр – рассеивающая линза О 2 , для которой изображение ab является мнимым источником. Окуляр превращает сходящийся пучок лучей в расходящийся и создает мнимое прямое изображение А ¢В ¢.

Рис. 17.10

Угол зрения b, под которым мы видим изображение А 1 В 1 , явно больше угла зрения a, под которым виден предмет АВ невооруженным глазом.

Читатель : Как-то уж очень мудрёно… А как тут подсчитать угловое увеличение трубы?

Рис. 17.11

Объектив дает действительное изображение А 1 В 1 в фокальной плоскости. Теперь вспомним про окуляр – рассеивающую линзу, для которой изображение А 1 В 1 является мнимым источником.

Построим изображение этого мнимого источника (рис. 17.12).

1. Проведем луч В 1 О через оптический центр линзы – этот луч не преломляется.

Рис. 17.12

2. Проведем из точки В 1 луч В 1 С , параллельный главной оптической оси. До пересечения с линзой (участок CD ) – это вполне реальный луч, а на участке 1 – это чисто «умственная» линия – до точки В 1 в реальности луч CD не доходит! Он преломляется так, что продолжение преломленного луча проходит через главный передний фокус рассеивающей линзы – точку F 2 .

Пересечение луча 1 с продолжением луча 2 образуют точку В 2 – мнимое изображение мнимого источника В 1 . Опуская из точки В 2 перпендикуляр на главную оптическую ось, получим точку А 2 .

Теперь заметим, что угол, под которым из окуляра видно изображение А 2 В 2 – это угол А 2 ОВ 2 = b. Из DА 1 ОВ 1 угол . Величину |d | можно найти из формулы линзы для окуляра: здесь мнимый источник дает мнимое изображение в рассеивающей линзе, поэтому формула линзы имеет вид:

.

Если мы хотим, чтобы наблюдение можно было вести без напряжения глаза, мнимое изображение А 2 В 2 надо «отправить» на бесконечность: | f | ® ¥. Тогда из окуляра будут выходить параллельные пучки лучей. А мнимый источник А 1 В 1 для этого должен оказаться в задней фокальной плоскости рассеивающей линзы. В самом деле, при | f | ® ¥

.

Этот «предельный» случай схематически изображен на рис. 17.13.

Из DА 1 О 1 В 1

h 1 = F 1 a, (1)

Из DА 1 О 2 В 1

h 1 = |F 1 |b, (2)

Приравняем правые части равенств (1) и (2), получим

.

Итак, мы получили угловое увеличение трубы Галилея

Как видим, формула очень похожа на соответствующую формулу (17.2) для трубы Кеплера.

Длина трубы Галилея, как видно из рис. 17.13, равна

l = F 1 – |F 2 |. (17.14)

Задача 17.2. Объективом театрального бинокля служит собирающая линза с фокусным расстоянием F 1 = 8,00 см, а окуляром – рассеивающая линза с фокусным рас­стоянием F 2 = –4,00 см. Чему равно расстояние между объективом и окуляром, если изображение рассматри­вается глазом с расстояния наилучшего зрения? На сколько нужно переместить окуляр для того, чтобы изо­бражение можно было рассматривать глазом, аккомо­дированным на бесконечность?

Это изображение играет по отношению к окуляру роль мнимого источника, находя­щегося на расстоянии а за плоскостью окуляра. Мнимое изображение S 2 , давае­мое окуляром, находится на расстоянии d 0 перед плоскостью окуляра,где d 0 расстояние наилучшего зрения нормального глаза.

Запишем формулу линзы для окуляра:

Расстояние между объективом и окуляром, как видно из рис. 17.14, равно

l = F 1 – a = 8,00 – 4,76 » 3,24 см.

В том случае, когда глаз аккомодирован на бесконечность, длина трубы по формуле (17.4) равна

l 1 = F 1 – |F 2 | = 8,00 – 4,00 » 4,00 см.

Следовательно, смещение окуляра составляет

Dl = l – l 1 = 4,76 – 4,00 » 0,76 см.

Ответ : l » 3,24 см; Dl » 0,76 см.

СТОП! Решите самостоятельно: В6, С5, С6.

Читатель : А может ли труба Галилея дать изображение на экране?

Рис. 17.15

Мы знаем, что рассеивающая линза может дать действительное изображение только в одном случае: если мнимый источник находится за линзой перед задним фокусом (рис. 17.15).

Задача 17.3. Объектив трубы Галилея дает в фокальной плоскости действительное изображение Солнца. При каком расстоянии между объективом и окуляром можно получить на экране изображение Солнца с диаметром, в три раза бóльшим, чем у действительного изображения, которое получилось бы без окуляра. Фокусное расстояние объектива F 1 = 100 см, окуляра – F 2 = –15 см.

Рассеивающая линза создает на экране действительное изображение этого мнимого источника – отрезок А 2 В 2 . На рисунке R 1 – радиус действительного изображения Солнца на экране, а R – радиус действительного изображения Солнца, созданного только объективом (при отсутствии окуляра).

Из подобия DА 1 ОВ 1 и DА 2 ОВ 2 получим:

.

Запишем формулу линзы для окуляра, при этом учтем, что d < 0 – источник мнимый, f > 0 – изображение действительное:

|d | = 10 см.

Тогда из рис. 17.16 находим искомое расстояние l между окуляром и объективом:

l = F 1 – |d | = 100 – 10 = 90 cм.

Ответ : l = 90 см.

СТОП! Решите самостоятельно: С7, С8.

Зрительная труба представляет собой оптический прибор, предназначенный для рассматривания глазом весьма удаленных предметов. Как и микроскоп, она состоит из объектива и окуляра; и тот и другой являются более или менее сложными оптическими системами, хотя и не столь сложными, как в случае микроскопа; однако мы их будем схематически представлять тонкими линзами. В зрительных трубах объектив и окуляр располагаются так, что задний фокус объектива почти совпадает с передним фокусом окуляра (рис. 253). Объектив дает действительное уменьшенное обратное изображение бесконечно удаленного предмета в своей задней фокальной плоскости; это изображение рассматривается в окуляр, как в лупу. Если передний фокус окуляра совпадает с задним фокусом объектива, то при рассматривании удаленного предмета из окуляра выходят пучки параллельных лучей, что удобно для наблюдения нормальным глазом в спокойном состоянии (без аккомодации) (ср. § 114). Но если зрение наблюдателя несколько отличается от нормального, то окуляр передвигают, устанавливая его «по глазам». Путем передвижения окуляра производится также «наводка» зрительной трубы при рассматривании предметов, расположенных на различных не очень больших расстояниях от наблюдателя.

Рис. 253. Расположение объектива и окуляра в зрительной трубе: задний фокус. Объектива совпадает с передним фокусом окуляра

Объектив зрительной трубы должен быть всегда собирающей системой, окуляр же может быть как собирающей, так и рассеивающей системой. Зрительная труба с собирающим (положительным) окуляром называется трубой Кеплера (рис. 254, а), труба с рассеивающим (отрицательным) окуляром - трубой Галилея (рис. 254, б). Объектив 1 зрительной трубы дает действительное обратное изображение удаленного предмета в своей фокальной плоскости . Расходящийся пучок лучей из точки падает на окуляр 2; так как эти лучи идут из точки в фокальной плоскости окуляра, то из него выходит пучок, параллельным побочной оптической оси окуляра под углом к главной оси. Попадая в глаз, лучи эти сходятся на его сетчатке и дают действительное изображение источника.

Рис. 254. Ход лучей в зрительной трубе: а) труба Кеплера; б) труба Галилея

Рис. 255. Ход лучей в призменном полевом бинокле (а) и его внешний вид (б). Изменение направления стрелки указывает на «обращение» изображения после прохождении лучей через часть системы

(В случае галилеевой трубы (б) глаз не изображен, чтобы не загромождать рисунка.) Угол - угол, который составляют с осью лучи, падающие на объектив.

Труба Галилея, нередко применяемая в обычном театральном бинокле, дает прямое изображение предмета, труба Кеплера - перевернутое. Вследствие этого, если труба Кеплера должна служить для земных наблюдении, то ее снабжают оборачивающей системой (дополнительной линзой или системой призм), в результате чего изображение становится прямым. Примером подобного прибора может служить призменный бинокль (рис. 255). Преимуществом трубы Кеплера является то, что в ней имеется действительное промежуточное изображение, в плоскость которого можно поместить измерительную шкалу, фотопластинку для производства снимков и т. п. Вследствие этого в астрономии и во всех случаях, связанных с измерениями, применяется труба Кеплера.

Ход лучей в трубе Галилея.

Услышав об изобретении зрительной трубы, знаменитый итальянский ученый Галилео Галилей писал в 1610 г.: «Месяцев десять тому назад дошел до наших ушей слух, что некий бельгиец построил перспективу (так Галилей называл телескоп), при помощи которой видимые предметы, далеко расположенные от глаз, становятся отчетливо различимы, как будто они были близко». Принципа работы телескопа Галилей не знал, но хорошо осведомленный в законах оптики, он вскоре догадался о его устройстве и сам сконструировал зрительную трубу. «Сначала я изготовил свинцовую трубку, - писал он, - на концах которой я поместил два очковых стекла, оба плоские с одной стороны, с другой стороны одно было выпукло-сферическим, другое же вогнутым. Помещая глаз у вогнутого стекла, я видел предметы достаточно большими и близкими. Именно, они казались в три раза ближе и в десять раз больше, чем при рассмотрении естественным глазом. После этого я разработал более точную трубу, которая представляла предметы увеличенными больше чем в шестьдесят раз. За этим, не жалея никакого труда и никаких средств, я достиг того, что построил себе орган настолько превосходный, что вещи казались через него при взгляде в тысячу раз крупнее и более чем в тридцать раз приближенными, чем при рассмотрении с помощью естественных способностей». Галилей первый понял, что качество изготовления линз для очков и для зрительных труб должно быть совершенно различно. Из десяти очковых лишь одна годилась для использования в зрительной трубе. Он усовершенствовал технологию изготовления линз до такой степени, какой она еще никогда не достигала. Это позволило ему изготовить трубу с тридцатикратным увеличением, в то время как зрительные трубы очковых мастеров увеличивали всего в три раза.

Галилеева зрительная труба состояла из двух стекол, из которых обращенное к предмету (объектив) было выпуклое, то есть собирающие световые лучи, а обращенное к глазу (окуляр) – вогнутое, рассеивающее стекло. Лучи, идущие от предмета, преломлялись в объективе, но прежде, чем дать изображение, они падали на окуляр, который их рассеивал. При таком расположении стекол лучи не делали действительного изображения, оно составлялось уже самим глазом, который составлял здесь как бы оптическую часть самой трубы.

Из рисунка видно, что объектив О давал в своем фокусе действительное изображение ba наблюдаемого предмета (это изображение обратное, в чем можно было бы убедиться, приняв его на экран). Однако вогнутый окуляр О1, установленный между изображением и объективом, рассеивал лучи, идущие от объектива, не давал им пересечься и тем препятствовал образованию действительного изображения ba. Рассеивающая линза образовывала мнимое изображение предмета в точках А1 и В1, которое находилось на расстоянии наилучшего зрения. В результате Галилей получал мнимое, увеличенное, прямое изображение предмета. Увеличение телескопа равно отношению фокусных расстояний объектива к фокусному расстоянию окуляра. Исходя их этого может показаться, что можно получать сколь угодно большие увеличения. Однако предел сильному увеличению кладут технические возможности: очень трудно отшлифовать стекла большого диаметра. Кроме того для слишком больших фокусных расстояний требовалась чрезмерно длинная труба, с которой было невозможно работать. Изучение зрительных труб Галилея, которые хранятся в музее истории науки во Флоренции, показывают, что его первый телескоп давал увеличение в 14 раз, второй – в 19,5 раза, а третий – в 34,6 раза.

Несмотря на то, что Галилея нельзя считать изобретателем зрительной трубы, он, несомненно, был первым, кто создал ее на научной основе, пользуясь теми знаниями, которые были известны оптике к началу 17 века, и превратил ее в мощный инструмент для научных исследований. Он был первым человеком, посмотревшим на ночное небо сквозь телескоп. Поэтому он увидел то, что до него еще не видел никто. Прежде всего Галилей постарался рассмотреть Луну. На ее поверхности оказались горы и долины. Вершины гор и цирков серебрились в солнечных лучах, а длинные тени чернели в долинах. Измерение длины теней позволило Галилею вычислить высоту лунных гор. На ночном небе он обнаружил множество новых звезд. Например, в созвездии Плеяд оказалось более 30 звезд, в то время как прежде числилось всего семь. В созвездии Ориона – 80 вместо 8. Млечный Путь, который рассматривали раньше как светящиеся пары, рассыпался в телескопе на громадное количество отдельных звезд. К великому удивлению Галилея звезды в телескопе казались меньше по размерам, чем при наблюдении простым глазом, так как они лишились своих ореолов. Зато планеты представлялись крошечными дисками, подобным Луне. Направив трубу на Юпитер, Галилей заметил четыре небольших светила, перемещающихся в пространстве вместе с планетой и изменяющих относительно нее свои положения. Через два месяца наблюдений Галилей догадался, что это – спутники Юпитера и предположил, что Юпитер своими размерами во много раз превосходит Землю. Рассматривая Венеру, Галилей открыл, что она имеет фазы, подобные лунным и потому должна вращаться вокруг Солнца. Наконец, наблюдая сквозь фиолетовое стекло Солнце, он обнаружил на его поверхности пятна, а по их движению установил, что солнце вращается вокруг своей оси.

Все эти поразительные открытия были сделаны Галилеем за сравнительно короткий промежуток времени благодаря телескопу. На современников они произвели ошеломляющие впечатление. Казалось, что покров тайны спал с мироздания и оно готово открыть перед человеком свои сокровенные глубины. Насколько велик был в то время интерес к астрономии видно из того, что только в Италии Галилей сразу получил заказ на сто инструментов своей системы. Одним из первых оценил открытия Галилея другой выдающийся астроном того времени Иоганн Кеплер. В 1610 г. Кеплер придумал принципиально новую конструкцию зрительной трубы, состоявшую из двух двояковыпуклых линз. В том же году он выпустил капитальный труд «Диоптрика», где подробно рассматривалась теория зрительных труб и вообще оптических приборов. Сам Кеплер не мог собрать телескоп – для этого у него не было ни средств, ни квалифицированных помощников. Однако в 1613 г. по схеме Кеплера построил свой телескоп другой астроном – Шейнер.

Любознательность и тяга к совершению новых открытий великого учёного Г. Галилея подарила миру замечательное изобретение, без которого невозможно представить себе современную астрономию — это телескоп . Продолжая исследования голландских учёных, итальянский изобретатель добился значительного увеличения масштаба телескопа за очень короткий срок — произошло это буквально за несколько недель.

Зрительная труба Галилея напоминала современные образцы лишь отдалённо — это была простая палка из свинца, на концах которой профессор поместил двояковыпуклую и двояковогнутую линзы.

Важной особенностью и главным отличием творения Галилея от существовавших ранее зрительных труб было хорошее качество изображения, полученное за счёт качественной шлифовки оптических линз - всеми процессами профессор занимался лично, не доверял тонкую работу никому. Трудолюбие и целеустремлённость учёного принесли свои плоды, хотя для достижения достойного результата пришлось проделать очень много кропотливой работы - из 300 линз нужными свойствами и качеством обладали лишь несколько вариантов.

Сохранившиеся до наших дней образцы у многих экспертов вызывают восхищение - даже по современным меркам, качество оптики является превосходным, и это при учёте того, что линзам отроду уже несколько веков.

Несмотря на предрассудки, царившие во времена Средневековья и склонность считать прогрессивные идеи «происками дьявола», зрительная труба обрела заслуженную популярность по всей Европе.

Усовершенствованное изобретение позволяло получить тридцатипятикратное увеличение, немыслимое для времён жизни Галилео. С помощью своей зрительной трубы, Галилей совершил массу астрономических открытий, что позволило открыть дорогу современной науке и вызвать энтузиазм и жажду исследований у множества пытливых и любознательных умов.

Оптическая система, придуманная Галилеем, обладала рядом недостатков - в частности, она была подвержена хроматической аберрации, однако последующие усовершенствования, проведённые учёными, позволили добиться минимизации этого эффекта. Стоит отметить, что при строительстве знаменитой Парижской обсерватории использовались телескопы, оборудованные как раз оптической системой Галилея.

Зрительная или подзорная труба Галилея обладает небольшим углом обзора - это можно считать главным её недостатком. Подобная оптическая система в настоящее время применяется в театральных биноклях, представляющих собой, по сути, две зрительных трубы, соединённые вместе.

Современные театральные бинокли с системой центральной внутренней фокусировки обычно предлагают 2.5-4 кратное увеличение, достаточное для наблюдения не только за театральными постановками, но и спортивными и концертными мероприятиями, подходят для экскурсионных поездок, связанных с детальным осмотром достопримечательностей.

Небольшой размер и изящный дизайн современных театральных биноклей делают их не только удобным оптическим инструментом, но и оригинальным аксессуаром.