أمراض الغدد الصماء. التصوير بالرنين المغناطيسي
بحث الموقع

أوجد مساحة الشكل المسطح الذي يحده الخطوط. آلة حاسبة على الإنترنت: حساب التكامل المحدد (مساحة شبه المنحرف المنحني)

تكامل محدد. كيفية حساب مساحة الشكل

دعونا ننتقل إلى النظر في تطبيقات حساب التفاضل والتكامل. سنقوم في هذا الدرس بتحليل المهمة النموذجية والأكثر شيوعًا - كيفية استخدام التكامل المحدد لحساب مساحة الشكل المستوي. أخيرًا، أولئك الذين يبحثون عن المعنى في الرياضيات العليا - عسى أن يجدوه. أنت لا تعرف أبدا. في الحياة الواقعية، سيتعين عليك تقريب قطعة أرض داشا باستخدام الدوال الأولية والعثور على مساحتها باستخدام تكامل محدد.

لإتقان المادة بنجاح، يجب عليك:

1) فهم التكامل غير المحدد على الأقل بمستوى متوسط. وبالتالي، يجب على الدمى قراءة الدرس أولا لا.

2) أن تكون قادرًا على تطبيق صيغة نيوتن-لايبنتز وحساب التكامل المحدد. يمكنك إقامة علاقات ودية دافئة مع تكاملات معينة على الصفحة تكامل محدد. أمثلة على الحلول.

في الواقع، من أجل العثور على مساحة الشكل، لا تحتاج إلى الكثير من المعرفة بالتكامل غير المحدد والمحدد. تتضمن مهمة "حساب المساحة باستخدام تكامل محدد" دائمًا إنشاء رسم، لذلك ستكون معرفتك ومهاراتك في الرسم مشكلة أكثر إلحاحًا. في هذا الصدد، من المفيد تحديث ذاكرتك بالرسوم البيانية للوظائف الأولية الأساسية، وعلى الأقل، لتكون قادرًا على إنشاء خط مستقيم وقطع مكافئ وقطع زائد. يمكن القيام بذلك (بالنسبة للكثيرين، فمن الضروري) بمساعدة المواد المنهجية ومقال عن التحولات الهندسية للرسوم البيانية.

في الواقع، كان الجميع على دراية بمهمة إيجاد المساحة باستخدام التكامل المحدد منذ المدرسة، ولن نذهب أبعد من المنهج المدرسي. ربما لم تكن هذه المقالة موجودة على الإطلاق، لكن الحقيقة هي أن المشكلة تحدث في 99 حالة من أصل 100، عندما يعاني الطالب من مدرسة مكروهة ويتقن بحماس دورة في الرياضيات العليا.

يتم تقديم مواد ورشة العمل هذه ببساطة وبالتفصيل وبحد أدنى من النظرية.

لنبدأ بشبه منحرف منحني.

شبه منحرف منحني الأضلاعهو شكل مسطح يحده محور وخطوط مستقيمة ورسم بياني لدالة مستمرة على فترة لا تتغير الإشارة على هذه الفترة. دع هذا الرقم يكون موجودا ليس أقلالمحور السيني:

ثم مساحة شبه منحرف منحني الأضلاع تساوي عدديا تكاملا محددا. أي تكامل محدد (موجود) له معنى هندسي جيد جدًا. في الدرس تكامل محدد. أمثلة على الحلولقلت أن التكامل المحدد هو عدد. والآن حان الوقت لذكر حقيقة مفيدة أخرى. من وجهة نظر الهندسة، التكامل المحدد هو المساحة.

إنه، التكامل المحدد (إن وجد) يتوافق هندسيًا مع مساحة شكل معين. على سبيل المثال، النظر في التكامل المحدد. يحدد التكامل منحنى على المستوى الموجود فوق المحور (أولئك الذين يرغبون في ذلك يمكنهم رسم رسم)، والتكامل المحدد نفسه يساوي عدديًا مساحة شبه المنحرف المنحني المقابل.

مثال 1

هذا هو بيان مهمة نموذجية. النقطة الأولى والأكثر أهمية في القرار هي بناء الرسم. علاوة على ذلك، يجب بناء الرسم يمين.

عند إنشاء الرسم، أوصي بالترتيب التالي: في البدايهفمن الأفضل بناء جميع الخطوط المستقيمة (إذا كانت موجودة) وفقط ثم- القطع المكافئ، القطع الزائد، الرسوم البيانية للوظائف الأخرى. يعد بناء الرسوم البيانية للوظائف أكثر ربحية نقطة بنقطة، يمكن العثور على تقنية البناء نقطة بنقطة في المادة المرجعية الرسوم البيانية وخصائص الوظائف الأولية. هناك يمكنك أيضًا العثور على مادة مفيدة جدًا لدرسنا - كيفية بناء القطع المكافئ بسرعة.

في هذه المشكلة، قد يبدو الحل هكذا.
لنرسم الرسم (لاحظ أن المعادلة تحدد المحور):


لن أقوم بتظليل شبه المنحرف المنحني، فمن الواضح هنا ما هي المنطقة التي نتحدث عنها. ويستمر الحل هكذا:

يوجد على المقطع رسم بياني للوظيفة فوق المحور، لهذا السبب:

إجابة:

من يواجه صعوبات في حساب التكامل المحدد وتطبيق صيغة نيوتن-لايبنتز ، راجع المحاضرة تكامل محدد. أمثلة على الحلول.

بعد اكتمال المهمة، من المفيد دائمًا إلقاء نظرة على الرسم ومعرفة ما إذا كانت الإجابة حقيقية. في هذه الحالة، نحسب عدد الخلايا في الرسم "بالعين" - حسنًا، سيكون هناك حوالي 9، يبدو أن هذا صحيح. من الواضح تمامًا أنه إذا حصلنا على الإجابة، على سبيل المثال: 20 وحدة مربعة، فمن الواضح أنه تم ارتكاب خطأ في مكان ما - من الواضح أن 20 خلية لا تتناسب مع الشكل المعني، على الأكثر عشرات. إذا كانت الإجابة سلبية، فقد تم حل المهمة بشكل غير صحيح.

مثال 2

حساب مساحة الشكل الذي يحده الخطوط، و، والمحور

هذا مثال لك لحله بنفسك. الحل الكامل والإجابة في نهاية الدرس.

ماذا تفعل إذا كان شبه المنحرف المنحني موجودًا تحت المحور؟

مثال 3

احسب مساحة الشكل المحدد بالخطوط ومحاور الإحداثيات.

حل: لنقم بالرسم:

إذا كان موجودا شبه منحرف منحني تحت المحور(أو على الأقل ليس أعلىالمحور المحدد)، فيمكن إيجاد مساحتها باستخدام الصيغة:
في هذه الحالة:

انتباه! ولا ينبغي الخلط بين نوعي المهام:

1) إذا طُلب منك حل تكامل محدد دون أي معنى هندسي، فقد يكون سالبًا.

2) إذا طلب منك إيجاد مساحة شكل ما باستخدام تكامل محدد، فإن المساحة تكون موجبة دائمًا! ولهذا السبب يظهر الطرح في الصيغة التي تمت مناقشتها للتو.

في الممارسة العملية، غالبا ما يقع الرقم في كل من المستوى العلوي والسفلي، وبالتالي، من أبسط المهام المدرسية ننتقل إلى أمثلة أكثر وضوحا.

مثال 4

أوجد مساحة الشكل المستوي المحدود بالخطوط .

حل: أولا تحتاج إلى إكمال الرسم. بشكل عام، عند إنشاء رسم في مسائل المساحة، فإننا نهتم أكثر بنقاط تقاطع الخطوط. دعونا نجد نقاط تقاطع القطع المكافئ والخط المستقيم. ويمكن أن يتم ذلك بطريقتين. الطريقة الأولى هي التحليلية. نحن نحل المعادلة:

وهذا يعني أن الحد الأدنى للتكامل هو الحد الأعلى للتكامل.
إذا كان ذلك ممكنا، فمن الأفضل عدم استخدام هذه الطريقة..

إن بناء الخطوط نقطة تلو الأخرى أكثر ربحية وأسرع بكثير، وتصبح حدود التكامل واضحة "في حد ذاتها". تمت مناقشة تقنية البناء نقطة بنقطة لمختلف الرسوم البيانية بالتفصيل في المساعدة الرسوم البيانية وخصائص الوظائف الأولية. ومع ذلك، لا يزال يتعين في بعض الأحيان استخدام الطريقة التحليلية لإيجاد الحدود، على سبيل المثال، إذا كان الرسم البياني كبيرًا بدرجة كافية، أو إذا لم يكشف البناء التفصيلي عن حدود التكامل (يمكن أن تكون كسرية أو غير منطقية). وسننظر أيضًا في مثل هذا المثال.

دعنا نعود إلى مهمتنا: من الأكثر عقلانية أن نبني أولاً خطًا مستقيمًا وبعد ذلك فقط قطعًا مكافئًا. لنقم بالرسم:

أكرر أنه عند البناء بشكل نقطي، غالبًا ما يتم اكتشاف حدود التكامل "تلقائيًا".

والآن صيغة العمل: إذا كان هناك بعض الوظائف المستمرة في المقطع أكبر من أو يساويبعض الدوال المستمرة، فيمكن إيجاد مساحة الشكل المحدود بالتمثيلات البيانية لهذه الدوال والخطوط باستخدام الصيغة:

هنا لم تعد بحاجة إلى التفكير في مكان وجود الشكل - فوق المحور أو أسفله، وبشكل تقريبي، يهم الرسم البياني الذي هو أعلى(نسبة إلى رسم بياني آخر)، وأيهما أدناه.

في المثال قيد النظر، من الواضح أن القطع المكافئ يقع فوق الخط المستقيم، وبالتالي من الضروري الطرح منه

قد يبدو الحل المكتمل كما يلي:

الشكل المطلوب محدود بقطع مكافئ في الأعلى وخط مستقيم في الأسفل.
على المقطع حسب الصيغة المقابلة:

إجابة:

وفي الحقيقة فإن الصيغة المدرسية لمساحة شبه المنحرف المنحني في النصف السفلي من المستوى (انظر المثال البسيط رقم 3) هي حالة خاصة من الصيغة . بما أن المحور محدد بالمعادلة، ويقع الرسم البياني للدالة ليس أعلىالمحاور إذن

والآن بعض الأمثلة للحل الخاص بك

مثال 5

مثال 6

أوجد مساحة الشكل المحدد بالخطوط .

عند حل المسائل التي تتضمن حساب المساحة باستخدام تكامل محدد، تحدث أحيانًا حادثة مضحكة. لقد تم الرسم بشكل صحيح، وكانت الحسابات صحيحة، ولكن بسبب الإهمال... تم العثور على منطقة الشكل الخطأهذا هو بالضبط ما أخطأ فيه خادمك المتواضع عدة مرات. هنا حالة من الحياة الحقيقية:

مثال 7

احسب مساحة الشكل المحدد بالخطوط , , .

حل: أولا، دعونا نرسم:

...آه، الرسم كان سيئًا، ولكن يبدو أن كل شيء واضح.

الشكل الذي نريد إيجاد مساحته مظلل باللون الأزرق(انظر بعناية إلى الحالة - كيف أن الرقم محدود!). لكن من الناحية العملية، وبسبب عدم الانتباه، غالباً ما يحدث "خلل" يجعلك بحاجة إلى العثور على مساحة الشكل المظلل باللون الأخضر!

هذا المثال مفيد أيضًا لأنه يحسب مساحة الشكل باستخدام تكاملين محددين. حقًا:

1) يوجد في الجزء الموجود أعلى المحور رسم بياني لخط مستقيم؛

2) يوجد في المقطع الموجود فوق المحور رسم بياني للقطع الزائد.

من الواضح تمامًا أنه يمكن (ويجب) إضافة المناطق، وبالتالي:

إجابة:

دعنا ننتقل إلى مهمة أخرى ذات معنى.

مثال 8

حساب مساحة الشكل الذي يحده الخطوط،
لنعرض المعادلات في صورة "مدرسة" ونرسم نقطة بنقطة:

ومن الرسم يتضح أن الحد الأعلى لدينا هو "جيد": .
ولكن ما هو الحد الأدنى؟! من الواضح أن هذا ليس عددا صحيحا، ولكن ما هو؟ ربما ؟ ولكن أين هو الضمان بأن الرسم تم بدقة تامة، فقد يتبين أن... أو الجذر. ماذا لو بنينا الرسم البياني بشكل غير صحيح؟

في مثل هذه الحالات، عليك قضاء وقت إضافي وتوضيح حدود التكامل تحليليا.

دعونا نجد نقاط تقاطع الخط المستقيم والقطع المكافئ.
للقيام بذلك، نحل المعادلة:


,

حقًا، .

الحل الإضافي تافه، والشيء الرئيسي هو عدم الخلط بين البدائل والعلامات، والحسابات هنا ليست أبسط.

على الجزء ، وفقا للصيغة المقابلة:

إجابة:

حسنًا، في ختام الدرس، دعونا نلقي نظرة على مهمتين أكثر صعوبة.

مثال 9

احسب مساحة الشكل المحدد بالخطوط , ,

حل: دعونا نصور هذا الشكل في الرسم.

اللعنة، لقد نسيت التوقيع على الجدول، ومعذرة، لم أرغب في إعادة الصورة. ليس يوم رسم، باختصار، اليوم هو اليوم =)

بالنسبة للبناء نقطة بنقطة، من الضروري معرفة مظهر الشكل الجيوب الأنفي (وبشكل عام من المفيد معرفة ذلك) الرسوم البيانية لجميع الوظائف الأولية)، بالإضافة إلى بعض القيم الجيبية، التي يمكن العثور عليها في الجدول المثلثي. في بعض الحالات (كما في هذه الحالة)، من الممكن إنشاء رسم تخطيطي، حيث يجب عرض الرسوم البيانية وحدود التكامل بشكل صحيح بشكل أساسي.

لا توجد مشاكل مع حدود التكامل هنا، فهي تتبع مباشرة الشرط: يتغير "x" من صفر إلى "pi". دعونا نتخذ قرارًا آخر:

في المقطع، يقع الرسم البياني للدالة فوق المحور، وبالتالي:

في الواقع، من أجل العثور على مساحة الشكل، لا تحتاج إلى الكثير من المعرفة بالتكامل غير المحدد والمحدد. تتضمن مهمة "حساب المساحة باستخدام تكامل محدد" دائمًا إنشاء رسم، لذلك ستكون معرفتك ومهاراتك في الرسم مشكلة أكثر إلحاحًا. في هذا الصدد، من المفيد تحديث ذاكرتك بالرسوم البيانية للوظائف الأولية الأساسية، وعلى الأقل، تكون قادرًا على إنشاء خط مستقيم وقطع زائد.

شبه المنحرف المنحني هو شكل مسطح يحده محور وخطوط مستقيمة ورسم بياني لدالة مستمرة على قطعة لا تتغير الإشارة في هذه الفترة. دع هذا الرقم يكون موجودا ليس أقلالمحور السيني:

ثم مساحة شبه منحرف منحني الأضلاع تساوي عدديا تكاملا محددا. أي تكامل محدد (موجود) له معنى هندسي جيد جدًا.

من وجهة نظر الهندسة، التكامل المحدد هو المساحة.

إنه،تكامل معين (إن وجد) يتوافق هندسيًا مع مساحة شكل معين. على سبيل المثال، النظر في التكامل المحدد. يحدد التكامل منحنى على المستوى الموجود فوق المحور (أولئك الذين يرغبون في ذلك يمكنهم رسم رسم)، والتكامل المحدد نفسه يساوي عدديًا مساحة شبه المنحرف المنحني المقابل.

مثال 1

هذا هو بيان مهمة نموذجية. النقطة الأولى والأكثر أهمية في القرار هي بناء الرسم. علاوة على ذلك، يجب بناء الرسم يمين.

عند إنشاء الرسم، أوصي بالترتيب التالي: في البدايهفمن الأفضل بناء جميع الخطوط المستقيمة (إذا كانت موجودة) وفقط ثم- القطع المكافئ، القطع الزائد، الرسوم البيانية للوظائف الأخرى. يعد بناء الرسوم البيانية للوظائف أكثر ربحية نقطة بنقطة.

في هذه المشكلة، قد يبدو الحل هكذا.
لنرسم الرسم (لاحظ أن المعادلة تحدد المحور):


يوجد على المقطع رسم بياني للوظيفة فوق المحور، لهذا السبب:

إجابة:

بعد اكتمال المهمة، من المفيد دائمًا إلقاء نظرة على الرسم ومعرفة ما إذا كانت الإجابة حقيقية. في هذه الحالة، "بالعين" نحسب عدد الخلايا في الرسم - حسنًا، سيكون هناك حوالي 9، يبدو أن هذا صحيح. من الواضح تمامًا أنه إذا حصلنا على الإجابة، على سبيل المثال: 20 وحدة مربعة، فمن الواضح أنه تم ارتكاب خطأ في مكان ما - من الواضح أن 20 خلية لا تتناسب مع الشكل المعني، على الأكثر عشرات. إذا كانت الإجابة سلبية، فقد تم حل المهمة بشكل غير صحيح.

مثال 3

احسب مساحة الشكل المحدد بالخطوط ومحاور الإحداثيات.

حل: لنقم بالرسم:


إذا كان موجودا شبه منحرف منحني تحت المحور(أو على الأقل ليس أعلىالمحور المحدد)، فيمكن إيجاد مساحتها باستخدام الصيغة:


في هذه الحالة:

انتباه! ولا ينبغي الخلط بين نوعي المهام:

1) إذا طُلب منك حل تكامل محدد دون أي معنى هندسي، فقد يكون سالبًا.

2) إذا طلب منك إيجاد مساحة شكل ما باستخدام تكامل محدد، فإن المساحة تكون موجبة دائمًا! ولهذا السبب يظهر الطرح في الصيغة التي تمت مناقشتها للتو.

في الممارسة العملية، غالبا ما يقع الرقم في كل من المستوى العلوي والسفلي، وبالتالي، من أبسط المهام المدرسية ننتقل إلى أمثلة أكثر وضوحا.

مثال 4

أوجد مساحة الشكل المستوي المحدود بالخطوط .

حل: أولا تحتاج إلى إكمال الرسم. بشكل عام، عند إنشاء رسم في مسائل المساحة، فإننا نهتم أكثر بنقاط تقاطع الخطوط. دعونا نجد نقاط تقاطع القطع المكافئ والخط المستقيم. ويمكن أن يتم ذلك بطريقتين. الطريقة الأولى هي التحليلية. نحن نحل المعادلة:

وهذا يعني أن الحد الأدنى للتكامل هو الحد الأعلى للتكامل.

إذا كان ذلك ممكنا، فمن الأفضل عدم استخدام هذه الطريقة..

إن بناء الخطوط نقطة تلو الأخرى أكثر ربحية وأسرع بكثير، وتصبح حدود التكامل واضحة "في حد ذاتها". ومع ذلك، لا يزال يتعين في بعض الأحيان استخدام الطريقة التحليلية لإيجاد الحدود، على سبيل المثال، إذا كان الرسم البياني كبيرًا بدرجة كافية، أو إذا لم يكشف البناء التفصيلي عن حدود التكامل (يمكن أن تكون كسرية أو غير منطقية). وسننظر أيضًا في مثل هذا المثال.

دعنا نعود إلى مهمتنا: من الأكثر عقلانية أن نبني أولاً خطًا مستقيمًا وبعد ذلك فقط قطعًا مكافئًا. لنقم بالرسم:

والآن صيغة العمل: إذا كان هناك بعض الوظائف المستمرة في المقطع أكبر من أو يساويبعض الدوال المستمرة، فيمكن إيجاد مساحة الشكل المحدود بالتمثيلات البيانية لهذه الدوال والخطوط باستخدام الصيغة:

هنا لم تعد بحاجة إلى التفكير في مكان وجود الشكل - فوق المحور أو أسفله، وبشكل تقريبي، يهم الرسم البياني الذي هو أعلى(نسبة إلى رسم بياني آخر)، وأيهما أدناه.

في المثال قيد النظر، من الواضح أن القطع المكافئ يقع فوق الخط المستقيم، وبالتالي من الضروري الطرح منه

قد يبدو الحل المكتمل كما يلي:

الشكل المطلوب محدود بقطع مكافئ في الأعلى وخط مستقيم في الأسفل.
على المقطع حسب الصيغة المقابلة:

إجابة:

مثال 4

احسب مساحة الشكل المحدد بالخطوط , , .

حل: أولا، دعونا نرسم:

الشكل الذي نريد إيجاد مساحته مظلل باللون الأزرق(انظر بعناية إلى الحالة - كيف أن الرقم محدود!). لكن من الناحية العملية، وبسبب عدم الانتباه، غالباً ما يحدث "خلل" يجعلك بحاجة إلى العثور على مساحة الشكل المظلل باللون الأخضر!

هذا المثال مفيد أيضًا لأنه يحسب مساحة الشكل باستخدام تكاملين محددين.

حقًا:

1) يوجد في الجزء الموجود أعلى المحور رسم بياني لخط مستقيم؛

2) يوجد في المقطع الموجود فوق المحور رسم بياني للقطع الزائد.

من الواضح تمامًا أنه يمكن (ويجب) إضافة المناطق، وبالتالي:

أ)

حل.

النقطة الأولى والأكثر أهمية في القرار هي بناء الرسم.

لنقم بالرسم:

المعادلة ص=0 يحدد المحور "س"؛

- س=-2 و س = 1 - مستقيم، موازي للمحور الوحدة التنظيمية؛

- ص=س 2 +2 - قطع مكافئ، فروعه متجهة نحو الأعلى، رأسه عند النقطة (0؛2).

تعليق.لبناء القطع المكافئ، يكفي العثور على نقاط تقاطعه مع محاور الإحداثيات، أي. وضع س = 0 العثور على التقاطع مع المحور الوحدة التنظيمية وحل المعادلة التربيعية المقابلة لها، وأوجد التقاطع مع المحور أوه .

يمكن العثور على قمة القطع المكافئ باستخدام الصيغ:

يمكنك أيضًا إنشاء خطوط نقطة بنقطة.

على الفاصل الزمني [-2;1] الرسم البياني للوظيفة ص=س 2 +2 تقع فوق المحور ثور ، لهذا السبب:

إجابة: س =9 وحدات مربعة

بعد اكتمال المهمة، من المفيد دائمًا إلقاء نظرة على الرسم ومعرفة ما إذا كانت الإجابة حقيقية. في هذه الحالة، "بالعين" نحسب عدد الخلايا في الرسم - حسنًا، سيكون هناك حوالي 9، يبدو أن هذا صحيح. من الواضح تمامًا أنه إذا حصلنا على الإجابة، على سبيل المثال: 20 وحدة مربعة، فمن الواضح أنه تم ارتكاب خطأ في مكان ما - من الواضح أن 20 خلية لا تتناسب مع الشكل المعني، على الأكثر عشرات. إذا كانت الإجابة سلبية، فقد تم حل المهمة بشكل غير صحيح.

ماذا تفعل إذا كان شبه المنحرف المنحني موجودًا تحت المحور أوه؟

ب)حساب مساحة الشكل الذي يحده الخطوط ص=-ه س , س = 1 وتنسيق المحاور.

حل.

دعونا نجعل الرسم.

إذا كان شبه منحرف منحني تقع بالكامل تحت المحور أوه , ثم يمكن العثور على مساحتها باستخدام الصيغة:

إجابة: ق=(ه-1) وحدات مربعة "1.72 وحدة مربعة

انتباه! ولا ينبغي الخلط بين نوعي المهام:

1) إذا طُلب منك حل تكامل محدد دون أي معنى هندسي، فقد يكون سالبًا.

2) إذا طلب منك إيجاد مساحة شكل ما باستخدام تكامل محدد، فإن المساحة تكون موجبة دائمًا! ولهذا السبب يظهر الطرح في الصيغة التي تمت مناقشتها للتو.

من الناحية العملية، غالبًا ما يقع الشكل في كل من النصف العلوي والسفلي.

مع)أوجد مساحة الشكل المستوي المحدود بالخطوط ص=2س-س 2، ص=-س.

حل.

أولا تحتاج إلى إكمال الرسم. بشكل عام، عند إنشاء رسم في مسائل المساحة، فإننا نهتم أكثر بنقاط تقاطع الخطوط. دعونا نجد نقاط تقاطع القطع المكافئ ومستقيم ويمكن أن يتم ذلك بطريقتين. الطريقة الأولى هي التحليلية.

نحن نحل المعادلة:

وهذا يعني أن الحد الأدنى للتكامل أ = 0 ، الحد الأعلى للتكامل ب = 3 .

نبني الخطوط المعطاة: 1. القطع المكافئ - الرأس عند النقطة (1؛1)؛ تقاطع المحور أوه -النقاط (0;0) و (0;2). 2. الخط المستقيم - منصف زاويتي الإحداثيات الثانية والرابعة. والآن انتبه! إذا كان على الجزء [ أ ؛ ب] بعض الوظائف المستمرة و (خ)أكبر من أو يساوي بعض الوظائف المستمرة ز (خ)، فيمكن إيجاد مساحة الشكل المقابل باستخدام الصيغة: .


ولا يهم أين يقع الشكل - فوق المحور أو أسفل المحور، ولكن ما يهم هو الرسم البياني الأعلى (بالنسبة إلى رسم بياني آخر)، والذي هو أدناه. في المثال قيد النظر، من الواضح أن القطع المكافئ يقع فوق الخط المستقيم، وبالتالي من الضروري الطرح منه

يمكنك بناء خطوط نقطة نقطة، وتصبح حدود التكامل واضحة "بنفسها". ومع ذلك، لا يزال يتعين في بعض الأحيان استخدام الطريقة التحليلية لإيجاد الحدود، على سبيل المثال، إذا كان الرسم البياني كبيرًا بدرجة كافية، أو إذا لم يكشف البناء التفصيلي عن حدود التكامل (يمكن أن تكون كسرية أو غير منطقية).

الشكل المطلوب محدود بقطع مكافئ في الأعلى وخط مستقيم في الأسفل.

على الجزء ، وفقا للصيغة المقابلة:

إجابة: س = 4.5 وحدة مربعة

في القسم السابق المخصص لتحليل المعنى الهندسي للتكامل المحدد، تلقينا عددًا من الصيغ لحساب مساحة شبه منحرف منحني الأضلاع:

Yandex.RTB RA-A-339285-1

S (G) = ∫ a b f (x) d x لدالة مستمرة وغير سالبة y = f (x) على الفترة [ a ; ب ] ،

S (G) = - ∫ a b f (x) d x لدالة مستمرة وغير موجبة y = f (x) على الفترة [ a ; ب ] .

تنطبق هذه الصيغ على حل المشكلات البسيطة نسبيًا. في الواقع، سيتعين علينا في كثير من الأحيان العمل مع شخصيات أكثر تعقيدًا. وفي هذا الصدد، سنخصص هذا القسم لتحليل خوارزميات حساب مساحة الأشكال التي تقتصر على وظائف في شكل صريح، أي. مثل y = f(x) أو x = g(y).

نظرية

دع الوظائف y = f 1 (x) و y = f 2 (x) محددة ومستمرة على الفاصل الزمني [ a ; b ] و f 1 (x) ≥ f 2 (x) لأي قيمة x من [ a ; ب ] . ثم صيغة حساب مساحة الشكل G، المحصورة بالخطوط x = a، x = b، y = f 1 (x) و y = f 2 (x) ستبدو هكذا S (G) = ∫ أ ب و 2 (س) - و 1 (س) د س .

سيتم تطبيق صيغة مماثلة على مساحة الشكل الذي يحده الخطوط y = c و y = d و x = g 1 (y) و x = g 2 (y): S (G) = ∫ c d ( ز 2 (ص) - ز 1 (ص) د ص .

دليل

دعونا نلقي نظرة على ثلاث حالات تكون الصيغة صالحة لها.

في الحالة الأولى، مع الأخذ بعين الاعتبار خاصية إضافة المساحة، فإن مجموع مساحات الشكل الأصلي G وشبه المنحرف المنحني G 1 يساوي مساحة الشكل G 2. هذا يعني انه

وبالتالي، S (G) = S (G 2) - S (G 1) = ∫ a b f 2 (x) d x - ∫ a b f 1 (x) d x = ∫ a b (f 2 (x) - f 1 (x)) dx.

يمكننا إجراء الانتقال الأخير باستخدام الخاصية الثالثة للتكامل المحدد.

وفي الحالة الثانية تكون المساواة صحيحة: S (G) = S (G 2) + S (G 1) = ∫ a b f 2 (x) d x + - ∫ a b f 1 (x) d x = ∫ a b (f 2 ( س) - و 1 (س)) د س

سيبدو الرسم التوضيحي كما يلي:

إذا كانت كلتا الدالتين غير موجبة، نحصل على: S (G) = S (G 2) - S (G 1) = - ∫ a b f 2 (x) d x - - ∫ a b f 1 (x) d x = ∫ a b (f) 2 (س) - و 1 (س)) د س . سيبدو الرسم التوضيحي كما يلي:

دعنا ننتقل إلى النظر في الحالة العامة عندما يتقاطع y = f 1 (x) و y = f 2 (x) مع المحور O x.

نشير إلى نقاط التقاطع كـ x i, i = 1, 2, . . . , ن - 1 . هذه النقاط تقسم المقطع [a؛ ب ] إلى أجزاء n x i - 1 ; س ط، ط = 1، 2، . . . ، ن، حيث α = س 0< x 1 < x 2 < . . . < x n - 1 < x n = b . Фигуру G можно представить объединением фигур G i , i = 1 , 2 , . . . , n . Очевидно, что на своем интервале G i попадает под один из трех рассмотренных ранее случаев, поэтому их площади находятся как S (G i) = ∫ x i - 1 x i (f 2 (x) - f 1 (x)) d x , i = 1 , 2 , . . . , n

لذلك،

S (G) = ∑ i = 1 n S (G i) = ∑ i = 1 n ∫ x i x i f 2 (x) - f 1 (x)) d x = = ∫ x 0 x n (f 2 (x) - f ( س)) د س = ∫ أ ب و 2 (س) - و 1 (س) د س

يمكننا إجراء الانتقال الأخير باستخدام الخاصية الخامسة للتكامل المحدد.

دعونا نوضح الحالة العامة على الرسم البياني.

يمكن اعتبار الصيغة S (G) = ∫ a b f 2 (x) - f 1 (x) d x مثبتة.

الآن دعنا ننتقل إلى تحليل أمثلة لحساب مساحة الأشكال المحدودة بالخطين y = f (x) و x = g (y).

سنبدأ النظر في أي من الأمثلة من خلال إنشاء رسم بياني. ستسمح لنا الصورة بتمثيل الأشكال المعقدة كإتحادات لأشكال أبسط. إذا كان إنشاء الرسوم البيانية والأشكال عليها أمرًا صعبًا بالنسبة لك، فيمكنك دراسة القسم الخاص بالدوال الأولية الأساسية، والتحويل الهندسي للرسوم البيانية للدوال، بالإضافة إلى إنشاء الرسوم البيانية أثناء دراسة الدالة.

مثال 1

من الضروري تحديد مساحة الشكل المحدد بالقطع المكافئ y = - x 2 + 6 x - 5 والخطوط المستقيمة y = - 1 3 x - 1 2, x = 1, x = 4.

حل

لنرسم الخطوط على الرسم البياني في نظام الإحداثيات الديكارتية.

على القطعة [ 1 ; 4 ] الرسم البياني للقطع المكافئ y = - x 2 + 6 x - 5 يقع أعلى الخط المستقيم y = - 1 3 x - 1 2. وفي هذا الصدد، للحصول على الإجابة نستخدم الصيغة التي حصلنا عليها سابقًا، وكذلك طريقة حساب التكامل المحدد باستخدام صيغة نيوتن-لايبنتز:

S (G) = ∫ 1 4 - x 2 + 6 x - 5 - - 1 3 x - 1 2 d x = = ∫ 1 4 - x 2 + 19 3 x - 9 2 d x = - 1 3 x 3 + 19 6 س 2 - 9 2 x 1 4 = - 1 3 4 3 + 19 6 4 2 - 9 2 4 - - 1 3 1 3 + 19 6 1 2 - 9 2 1 = = - 64 3 + 152 3 - 18 + 1 3 - 19 6 + 9 2 = 13

الجواب: س(ز) = 13

دعونا ننظر إلى مثال أكثر تعقيدا.

مثال 2

من الضروري حساب مساحة الشكل، والتي تقتصر على الخطوط y = x + 2، y = x، x = 7.

حل

في هذه الحالة، لدينا خط مستقيم واحد فقط موازي لمحور x. هذا هو س = 7. وهذا يتطلب منا أن نجد الحد الثاني للتكامل بأنفسنا.

دعونا نبني رسمًا بيانيًا ونرسم عليه الخطوط الواردة في بيان المشكلة.

بوجود الرسم البياني أمام أعيننا، يمكننا بسهولة تحديد أن الحد الأدنى للتكامل سيكون حدود نقطة تقاطع الرسم البياني للخط المستقيم y = x وشبه القطع المكافئ y = x + 2. للعثور على الإحداثي السيني نستخدم المعادلات:

y = x + 2 O DZ: x ≥ - 2 x 2 = x + 2 2 x 2 - x - 2 = 0 D = (- 1) 2 - 4 1 (- 2) = 9 x 1 = 1 + 9 2 = 2 ∈ O DZ x 2 = 1 - 9 2 = - 1 ∉ O DZ

يتبين أن حدود نقطة التقاطع هي x = 2.

نلفت انتباهك إلى حقيقة أنه في المثال العام في الرسم، تتقاطع الخطوط y = x + 2، y = x عند النقطة (2؛ 2)، لذلك قد تبدو مثل هذه الحسابات التفصيلية غير ضرورية. لقد قدمنا ​​مثل هذا الحل التفصيلي هنا فقط لأنه في الحالات الأكثر تعقيدًا قد لا يكون الحل واضحًا جدًا. وهذا يعني أنه من الأفضل دائمًا حساب إحداثيات تقاطع الخطوط بشكل تحليلي.

على الفاصل الزمني [ 2 ; 7] الرسم البياني للدالة y = x يقع أعلى الرسم البياني للدالة y = x + 2. دعونا نطبق الصيغة لحساب المساحة:

S (G) = ∫ 2 7 (x - x + 2) d x = x 2 2 - 2 3 · (x + 2) 3 2 2 7 = = 7 2 2 - 2 3 · (7 + 2) 3 2 - 2 2 2 - 2 3 2 + 2 3 2 = = 49 2 - 18 - 2 + 16 3 = 59 6

الجواب: س (ز) = 59 6

مثال 3

من الضروري حساب مساحة الشكل، والتي تقتصر على الرسوم البيانية للوظائف y = 1 x و y = - x 2 + 4 x - 2.

حل

دعونا نرسم الخطوط على الرسم البياني.

دعونا نحدد حدود التكامل. للقيام بذلك، نحدد إحداثيات نقاط تقاطع الخطوط عن طريق مساواة التعبيرات 1 x و - x 2 + 4 x - 2. بشرط ألا تكون x صفراً، فإن المساواة 1 x = - x 2 + 4 x - 2 تصبح معادلة لمعادلة الدرجة الثالثة - x 3 + 4 x 2 - 2 x - 1 = 0 بمعاملات صحيحة. لتحديث ذاكرتك عن الخوارزمية الخاصة بحل مثل هذه المعادلات، يمكننا الرجوع إلى قسم "حل المعادلات التكعيبية".

جذر هذه المعادلة هو x = 1: - 1 3 + 4 1 2 - 2 1 - 1 = 0.

بقسمة التعبير - x 3 + 4 x 2 - 2 x - 1 على ذات الحدين x - 1، نحصل على: - x 3 + 4 x 2 - 2 x - 1 ⇔ - (x - 1) (x 2 - 3 x - 1) = 0

يمكننا إيجاد الجذور المتبقية من المعادلة x 2 - 3 x - 1 = 0:

x 2 - 3 x - 1 = 0 د = (- 3) 2 - 4 · 1 · (- 1) = 13 x 1 = 3 + 13 2 ≈ 3 . 3؛ س 2 = 3 - 13 2 ≈ - 0 . 3

لقد وجدنا الفاصل الزمني x ∈ 1؛ 3 + 13 2، حيث يكون الشكل G موجودًا فوق الخط الأزرق وتحت الخط الأحمر. وهذا يساعدنا على تحديد مساحة الشكل:

S (G) = ∫ 1 3 + 13 2 - x 2 + 4 x - 2 - 1 x d x = - x 3 3 + 2 x 2 - 2 x - ln x 1 3 + 13 2 = = - 3 + 13 2 3 3 + 2 3 + 13 2 2 - 2 3 + 13 2 - ع 3 + 13 2 - - - 1 3 3 + 2 1 2 - 2 1 - ع 1 = 7 + 13 3 - ع 3 + 13 2

الجواب: س (ز) = 7 + 13 3 - l 3 + 13 2

مثال 4

من الضروري حساب مساحة الشكل، والتي تقتصر على المنحنيات y = x 3، y = - log 2 x + 1 ومحور الإحداثي السيني.

حل

دعونا نرسم جميع الخطوط على الرسم البياني. يمكننا الحصول على الرسم البياني للدالة y = - log 2 x + 1 من الرسم البياني y = log 2 x إذا وضعناها بشكل متماثل حول المحور x وحركناها للأعلى بمقدار وحدة واحدة. معادلة المحور السيني هي y = 0.

دعونا نحدد نقاط تقاطع الخطوط.

كما يتبين من الشكل، فإن الرسوم البيانية للوظائف y = x 3 و y = 0 تتقاطع عند النقطة (0؛ 0). يحدث هذا لأن x = 0 هو الجذر الحقيقي الوحيد للمعادلة x 3 = 0.

x = 2 هو الجذر الوحيد للمعادلة - log 2 x + 1 = 0، وبالتالي فإن الرسوم البيانية للوظائف y = - log 2 x + 1 و y = 0 تتقاطع عند النقطة (2؛ 0).

x = 1 هو الجذر الوحيد للمعادلة x 3 = - log 2 x + 1 . في هذا الصدد، تتقاطع الرسوم البيانية للوظائف y = x 3 و y = - log 2 x + 1 عند النقطة (1؛ 1). العبارة الأخيرة قد لا تكون واضحة، لكن المعادلة x 3 = - log 2 x + 1 لا يمكن أن يكون لها أكثر من جذر واحد، لأن الدالة y = x 3 تتزايد بشكل صارم، والدالة y = - log 2 x + 1 هي يتناقص بشدة.

يتضمن الحل الإضافي عدة خيارات.

الخيار 1

يمكننا أن نتخيل الشكل G كمجموع شبه منحرفين منحنيين يقعان فوق المحور السيني، يقع أولهما أسفل خط الوسط على القطعة x ∈ 0؛ 1، والثاني أسفل الخط الأحمر على القطعة x ∈ 1؛ 2. هذا يعني أن المساحة ستكون مساوية S (G) = ∫ 0 1 x 3 d x + ∫ 1 2 (- log 2 x + 1) d x .

الخيار رقم 2

يمكن تمثيل الشكل G بالفرق بين شكلين، يقع أولهما فوق المحور السيني وتحت الخط الأزرق على المقطع x ∈ 0؛ 2، والثاني بين الخطين الأحمر والأزرق على القطعة x ∈ 1؛ 2. هذا يتيح لنا العثور على المنطقة على النحو التالي:

S (G) = ∫ 0 2 x 3 د x - ∫ 1 2 x 3 - (- سجل 2 x + 1) د x

في هذه الحالة، للعثور على المساحة، سيتعين عليك استخدام صيغة من الصيغة S (G) = ∫ c d (g 2 (y) - g 1 (y)) d y. في الواقع، يمكن تمثيل الخطوط التي تربط الشكل كدوال للوسيطة y.

دعونا نحل المعادلات y = x 3 و - log 2 x + 1 بالنسبة لـ x:

y = x 3 ⇒ x = y 3 y = - سجل 2 x + 1 ⇒ سجل 2 x = 1 - y ⇒ x = 2 1 - y

نحصل على المساحة المطلوبة:

S (G) = ∫ 0 1 (2 1 - y - y 3) د y = - 2 1 - y ln 2 - y 4 4 0 1 = = - 2 1 - 1 ln 2 - 1 4 4 - - 2 1 - 0 ln 2 - 0 4 4 = - 1 ln 2 - 1 4 + 2 ln 2 = 1 ln 2 - 1 4

الجواب: S (G) = 1 ln 2 - 1 4

مثال 5

من الضروري حساب مساحة الشكل المحدد بالخطوط y = x، y = 2 3 x - 3، y = - 1 2 x + 4.

حل

باستخدام الخط الأحمر، نرسم الخط المحدد بواسطة الدالة y = x. نرسم الخط y = - 1 2 x + 4 باللون الأزرق، والخط y = 2 3 x - 3 باللون الأسود.

دعونا نحدد نقاط التقاطع.

لنجد نقاط تقاطع الرسوم البيانية للدوال y = x و y = - 1 2 x + 4:

x = - 1 2 x + 4 O DZ: x ≥ 0 x = - 1 2 x + 4 2 ⇒ x = 1 4 x 2 - 4 x + 16 ⇔ x 2 - 20 x + 64 = 0 D = (- 20 ) 2 - 4 1 64 = 144 × 1 = 20 + 144 2 = 16 ; x 2 = 20 - 144 2 = 4 تحقق: x 1 = 16 = 4, - 1 2 x 1 + 4 = - 1 2 16 + 4 = - 4 ⇒ x 1 = 16 ليس حل المعادلة x 2 = 4 = 2, - 1 2 x 2 + 4 = - 1 2 4 + 4 = 2 ⇒ x 2 = 4 هو حل المعادلة ⇒ (4; 2) نقطة التقاطع i y = x و y = - 1 2 x + 4

لنجد نقطة تقاطع الرسوم البيانية للوظائف y = x و y = 2 3 x - 3:

x = 2 3 x - 3 O DZ: x ≥ 0 x = 2 3 x - 3 2 ⇔ x = 4 9 x 2 - 4 x + 9 ⇔ 4 x 2 - 45 x + 81 = 0 D = (- 45 ) 2 - 4 4 81 = 729 × 1 = 45 + 729 8 = 9، × 2 45 - 729 8 = 9 4 تحقق: × 1 = 9 = 3، 2 3 × 1 - 3 = 2 3 9 - 3 = 3 ⇒ x 1 = 9 هو حل المعادلة ⇒ (9 ; 3) النقطة a s y = x و y = 2 3 x - 3 x 2 = 9 4 = 3 2, 2 3 x 1 - 3 = 2 3 9 4 - 3 = - 3 2 ⇒ x 2 = 9 4 لا يوجد حل للمعادلة

لنوجد نقطة تقاطع الخطين y = - 1 2 x + 4 و y = 2 3 x - 3:

1 2 x + 4 = 2 3 x - 3 ⇔ - 3 x + 24 = 4 x - 18 ⇔ 7 x = 42 ⇔ x = 6 - 1 2 6 + 4 = 2 3 6 - 3 = 1 ⇒ (6 ; 1) ) نقطة التقاطع y = - 1 2 x + 4 و y = 2 3 x - 3

الطريقة رقم 1

دعونا نتخيل مساحة الشكل المطلوب كمجموع مساحات الأشكال الفردية.

ثم مساحة الشكل هي:

S (G) = ∫ 4 6 x - - 1 2 x + 4 d x + ∫ 6 9 x - 2 3 x - 3 d x = = 2 3 x 3 2 + x 2 4 - 4 x 4 6 + 2 3 x 3 2 - س 2 3 + 3 × 6 9 = = 2 3 6 3 2 + 6 2 4 - 4 6 - 2 3 4 3 2 + 4 2 4 - 4 4 + + 2 3 9 3 2 - 9 2 3 + 3 9 - 2 3 6 3 2 - 6 2 3 + 3 6 = - 25 3 + 4 6 + - 4 6 + 12 = 11 3

الطريقة رقم 2

يمكن تمثيل مساحة الشكل الأصلي كمجموع شكلين آخرين.

ثم نحل معادلة الخط بالنسبة لـ x، وبعد ذلك فقط نطبق صيغة حساب مساحة الشكل.

y = x ⇒ x = y 2 خط أحمر y = 2 3 x - 3 ⇒ x = 3 2 y + 9 2 خط أسود y = - 1 2 x + 4 ⇒ x = - 2 y + 8 s i n i a l i n e

إذن المنطقة هي:

S (G) = ∫ 1 2 3 2 y + 9 2 - - 2 y + 8 d y + ∫ 2 3 3 2 y + 9 2 - y 2 d y = = ∫ 1 2 7 2 y - 7 2 d y + ∫ 2 3 3 2 ص + 9 2 - ص 2 د ص = = 7 4 ص 2 - 7 4 ص 1 2 + - ص 3 3 + 3 ص 2 4 + 9 2 ص 2 3 = 7 4 2 2 - 7 4 2 - 7 4 1 2 - 7 4 1 + + - 3 3 3 + 3 3 2 4 + 9 2 3 - - 2 3 3 + 3 2 2 4 + 9 2 2 = = 7 4 + 23 12 = 11 3

كما ترون، القيم هي نفسها.

الجواب: س (ز) = 11 3

نتائج

للعثور على مساحة شكل محدد بخطوط معينة، نحتاج إلى إنشاء خطوط على المستوى، وإيجاد نقاط تقاطعها، وتطبيق الصيغة للعثور على المساحة. في هذا القسم، قمنا بفحص المتغيرات الأكثر شيوعًا للمهام.

إذا لاحظت وجود خطأ في النص، فيرجى تحديده والضغط على Ctrl+Enter

دعونا ننتقل إلى النظر في تطبيقات حساب التفاضل والتكامل. سنقوم في هذا الدرس بتحليل المهمة النموذجية والأكثر شيوعًا حساب مساحة الشكل المستوي باستخدام تكامل محدد. وأخيرًا، دع كل من يبحث عن المعنى في الرياضيات العليا يجده. أنت لا تعرف أبدا. في الحياة الواقعية، سيتعين عليك تقريب قطعة أرض داشا باستخدام الدوال الأولية والعثور على مساحتها باستخدام تكامل محدد.

لإتقان المادة بنجاح، يجب عليك:

1) فهم التكامل غير المحدد على الأقل بمستوى متوسط. وبالتالي، يجب على الدمى قراءة الدرس أولا لا.

2) أن تكون قادرًا على تطبيق صيغة نيوتن-لايبنتز وحساب التكامل المحدد. يمكنك إقامة علاقات ودية دافئة مع تكاملات معينة على الصفحة تكامل محدد. أمثلة على الحلول. تتضمن مهمة "حساب المساحة باستخدام تكامل محدد" دائمًا إنشاء رسم، لذا فإن معرفتك ومهاراتك في الرسم ستكون أيضًا مشكلة ذات صلة. كحد أدنى، يجب أن تكون قادرًا على إنشاء خط مستقيم وقطع مكافئ وقطع زائد.

لنبدأ بشبه منحرف منحني. شبه المنحرف المنحني هو شكل مسطح يحده الرسم البياني لبعض الوظائف ذ = F(س)، المحور ثوروالخطوط س = أ; س = ب.

مساحة شبه منحرف منحني الأضلاع تساوي عدديا تكاملا محددا

أي تكامل محدد (موجود) له معنى هندسي جيد جدًا. في الدرس تكامل محدد. أمثلة على الحلولقلنا أن التكامل المحدد هو عدد. والآن حان الوقت لذكر حقيقة مفيدة أخرى. من وجهة نظر الهندسة، التكامل المحدد هو المساحة. إنه، التكامل المحدد (إن وجد) يتوافق هندسيًا مع مساحة شكل معين. النظر في التكامل المحدد

متكامل

يحدد منحنى على المستوى (يمكن رسمه إذا رغبت في ذلك)، والتكامل المحدد نفسه يساوي عدديًا مساحة شبه المنحرف المنحني المقابل.



مثال 1

, , , .

هذا هو بيان مهمة نموذجية. النقطة الأكثر أهمية في القرار هي بناء الرسم. علاوة على ذلك، يجب بناء الرسم يمين.

عند إنشاء الرسم، أوصي بالترتيب التالي: في البدايهفمن الأفضل بناء جميع الخطوط المستقيمة (إذا كانت موجودة) وفقط ثم- القطع المكافئ، القطع الزائد، الرسوم البيانية للوظائف الأخرى. يمكن العثور على تقنية البناء نقطة بنقطة في المواد المرجعية الرسوم البيانية وخصائص الوظائف الأولية. هناك يمكنك أيضًا العثور على مادة مفيدة جدًا لدرسنا - كيفية بناء القطع المكافئ بسرعة.

في هذه المشكلة، قد يبدو الحل هكذا.

لنقم بالرسم (لاحظ أن المعادلة ذ= 0 يحدد المحور ثور):

لن نقوم بتظليل شبه المنحرف المنحني، فمن الواضح هنا ما هي المنطقة التي نتحدث عنها. ويستمر الحل هكذا:

على المقطع [-2؛ 1] الرسم البياني الوظيفي ذ = س 2+2 تقع فوق المحورثور، لهذا السبب:

إجابة: .

من يواجه صعوبات في حساب التكامل المحدد وتطبيق صيغة نيوتن-لايبنتز

,

الرجوع إلى المحاضرة تكامل محدد. أمثلة على الحلول. بعد اكتمال المهمة، من المفيد دائمًا إلقاء نظرة على الرسم ومعرفة ما إذا كانت الإجابة حقيقية. في هذه الحالة، نحسب عدد الخلايا في الرسم "بالعين" - حسنًا، سيكون هناك حوالي 9، يبدو أن هذا صحيح. من الواضح تمامًا أنه إذا حصلنا على الإجابة، على سبيل المثال: 20 وحدة مربعة، فمن الواضح أنه تم ارتكاب خطأ في مكان ما - من الواضح أن 20 خلية لا تتناسب مع الشكل المعني، على الأكثر عشرات. إذا كانت الإجابة سلبية، فقد تم حل المهمة بشكل غير صحيح.

مثال 2

حساب مساحة الشكل الذي يحده الخطوط xy = 4, س = 2, س= 4 والمحور ثور.

هذا مثال لك لحله بنفسك. الحل الكامل والإجابة في نهاية الدرس.

ماذا تفعل إذا كان شبه المنحرف المنحني موجودًا تحت المحورثور?

مثال 3

حساب مساحة الشكل الذي يحده الخطوط ذ = السابق, س= 1 ومحاور الإحداثيات.

الحل: لنقم بالرسم:

إذا كان شبه منحرف منحني تقع بالكامل تحت المحور ثور ، فيمكن إيجاد مساحتها باستخدام الصيغة:

في هذه الحالة:

.

انتباه! ولا ينبغي الخلط بين نوعي المهام:

1) إذا طُلب منك حل تكامل محدد دون أي معنى هندسي، فقد يكون سالبًا.

2) إذا طلب منك إيجاد مساحة شكل ما باستخدام تكامل محدد، فإن المساحة تكون موجبة دائمًا! ولهذا السبب يظهر الطرح في الصيغة التي تمت مناقشتها للتو.

في الممارسة العملية، غالبا ما يقع الرقم في كل من المستوى العلوي والسفلي، وبالتالي، من أبسط المهام المدرسية ننتقل إلى أمثلة أكثر وضوحا.

مثال 4

أوجد مساحة الشكل المستوي المحدود بالخطوط ذ = 2سس 2 , ذ = -س.

الحل: أولا تحتاج إلى رسم. عند إنشاء رسم في مسائل المساحة، نحن مهتمون أكثر بنقاط تقاطع الخطوط. دعونا نجد نقاط تقاطع القطع المكافئ ذ = 2سس 2 ومستقيم ذ = -س. ويمكن أن يتم ذلك بطريقتين. الطريقة الأولى هي التحليلية. نحن نحل المعادلة:

وهذا يعني أن الحد الأدنى للتكامل أ= 0، الحد الأعلى للتكامل ب= 3. غالبًا ما يكون بناء الخطوط نقطة بنقطة أكثر ربحية وأسرع، وتصبح حدود التكامل واضحة "بنفسها". ومع ذلك، لا يزال يتعين في بعض الأحيان استخدام الطريقة التحليلية لإيجاد الحدود، على سبيل المثال، إذا كان الرسم البياني كبيرًا بدرجة كافية، أو إذا لم يكشف البناء التفصيلي عن حدود التكامل (يمكن أن تكون كسرية أو غير منطقية). دعنا نعود إلى مهمتنا: من الأكثر عقلانية أن نبني أولاً خطًا مستقيمًا وبعد ذلك فقط قطعًا مكافئًا. لنقم بالرسم:

دعونا نكرر أنه عند البناء النقطي، غالبًا ما يتم تحديد حدود التكامل "تلقائيًا".

والآن صيغة العمل:

إذا كان على الجزء [ أ; ب] بعض الوظائف المستمرة F(س) أكبر من أو يساويبعض الوظائف المستمرة ز(س) ، فيمكن العثور على مساحة الشكل المقابل باستخدام الصيغة:

هنا لم تعد بحاجة إلى التفكير في مكان وجود الرقم - فوق المحور أو أسفل المحور، ولكن يهم الرسم البياني الذي هو أعلى(نسبة إلى رسم بياني آخر)، وأيهما أدناه.

في المثال قيد النظر، من الواضح أنه في المقطع يقع القطع المكافئ فوق الخط المستقيم، وبالتالي من 2 سسيجب طرح 2 - س.

قد يبدو الحل المكتمل كما يلي:

الرقم المطلوب محدود بقطع مكافئ ذ = 2سس 2 في الأعلى ومستقيم ذ = -سأقل.

على الجزء 2 سس 2 ≥ -س. وفقا للصيغة المقابلة:

إجابة: .

وفي الواقع فإن الصيغة المدرسية لمساحة شبه المنحرف المنحني في النصف السفلي من المستوى (انظر المثال رقم 3) هي حالة خاصة من الصيغة

.

لأن المحور ثورتعطى بواسطة المعادلة ذ= 0، والرسم البياني للوظيفة ز(س) يقع أسفل المحور ثور، الذي - التي

.

والآن بعض الأمثلة للحل الخاص بك

مثال 5

مثال 6

أوجد مساحة الشكل الذي يحده الخطوط

عند حل المسائل التي تتضمن حساب المساحة باستخدام تكامل محدد، تحدث أحيانًا حادثة مضحكة. لقد تم الرسم بشكل صحيح، وكانت الحسابات صحيحة، ولكن بسبب الإهمال... تم العثور على منطقة الرقم الخطأ.

مثال 7

أولاً لنقم بالرسم:

الشكل الذي نريد إيجاد مساحته مظلل باللون الأزرق(انظر بعناية إلى الحالة - كيف أن الرقم محدود!). ولكن من الناحية العملية، وبسبب عدم الانتباه، غالبًا ما يقرر الأشخاص أنهم بحاجة إلى العثور على مساحة الشكل المظلل باللون الأخضر!

هذا المثال مفيد أيضًا لأنه يحسب مساحة الشكل باستخدام تكاملين محددين. حقًا:

1) على الجزء [-1؛ 1] فوق المحور ثوريقع الرسم البياني مباشرة ذ = س+1;

2) على قطعة فوق المحور ثوريقع الرسم البياني للقطع الزائد ذ = (2/س).

من الواضح تمامًا أنه يمكن (ويجب) إضافة المناطق، وبالتالي:

إجابة:

مثال 8

حساب مساحة الشكل الذي يحده الخطوط

دعونا نعرض المعادلات في صيغة "المدرسة".

وقم بعمل رسم نقطة بنقطة:

يتضح من الرسم أن الحد الأعلى لدينا هو "جيد": ب = 1.

ولكن ما هو الحد الأدنى؟! من الواضح أن هذا ليس عددا صحيحا، ولكن ما هو؟

ربما، أ=(-1/3)؟ ولكن أين هو الضمان الذي يتم به الرسم بدقة مثالية، قد يكون ذلك جيدا أ=(-1/4). ماذا لو بنينا الرسم البياني بشكل غير صحيح؟

في مثل هذه الحالات، عليك قضاء وقت إضافي وتوضيح حدود التكامل تحليليا.

دعونا نجد نقاط تقاطع الرسوم البيانية

للقيام بذلك، نحل المعادلة:

.

لذلك، أ=(-1/3).

الحل الآخر تافه. الشيء الرئيسي هو عدم الخلط بين البدائل والعلامات. الحسابات هنا ليست أبسط. على الجزء

, ,

وفقا للصيغة المقابلة:

إجابة:

في ختام الدرس، دعونا نلقي نظرة على مهمتين أكثر صعوبة.

مثال 9

حساب مساحة الشكل الذي يحده الخطوط

الحل: لنرسم هذا الشكل في الرسم.

لإنشاء رسم نقطة بنقطة، تحتاج إلى معرفة مظهر الجيوب الأنفية. بشكل عام، من المفيد معرفة الرسوم البيانية لجميع الوظائف الأولية، وكذلك بعض قيم الجيب. يمكن العثور عليها في جدول القيم الدوال المثلثية. في بعض الحالات (على سبيل المثال، في هذه الحالة)، من الممكن إنشاء رسم تخطيطي، حيث يجب عرض الرسوم البيانية وحدود التكامل بشكل صحيح بشكل أساسي.

لا توجد مشاكل مع حدود التكامل هنا، فهي تتبع الشرط مباشرة:

- يتغير "x" من صفر إلى "pi". دعونا نتخذ قرارًا آخر:

على قطعة، الرسم البياني للدالة ذ= الخطيئة 3 ستقع فوق المحور ثور، لهذا السبب:

(1) يمكنك أن ترى كيف يتم دمج جيب الجيب وجيب التمام في القوى الفردية في الدرس تكاملات الدوال المثلثية. نحن نقرص جيبًا واحدًا.

(2) نستخدم الهوية المثلثية الرئيسية في النموذج

(3) دعونا نغير المتغير ر=cos س، إذن: يقع فوق المحور، وبالتالي:

.

.

ملحوظة:لاحظ كيف يتم أخذ تكامل المماس المكعب؛ ويتم استخدام نتيجة طبيعية للمتطابقة المثلثية الأساسية هنا

.