Diseases, endocrinologists. MRI
Site search

Which water drips faster, cold or hot? Why does hot water freeze faster than cold water?

Water- a rather simple substance from a chemical point of view, however, it has a number of unusual properties that never cease to amaze scientists. Below are a few facts that few people know about.

1. Which water freezes faster - cold or hot?

Let's take two containers with water: pour hot water into one and cold water into the other, and place them in the freezer. Hot water will freeze faster than cold water, although logically, cold water should have turned into ice first: after all, hot water must first cool to the cold temperature, and then turn into ice, while cold water does not need to cool. Why is this happening?

In 1963, a Tanzanian student named Erasto B. Mpemba, while freezing an ice cream mixture, noticed that the hot mixture solidified faster in the freezer than the cold one. When the young man shared his discovery with his physics teacher, he only laughed at him. Fortunately, the student was persistent and convinced the teacher to conduct an experiment, which confirmed his discovery: under certain conditions, hot water actually freezes faster than cold water.

Now this phenomenon of hot water freezing faster than cold water is called “ Mpemba effect". True, long before him this unique property of water was noted by Aristotle, Francis Bacon and Rene Descartes.

Scientists still do not fully understand the nature of this phenomenon, explaining it either by the difference in supercooling, evaporation, ice formation, convection, or by the effect of liquefied gases on hot and cold water.

2. It can freeze instantly

Everyone knows that water always turns to ice when cooled to 0°C... with some exceptions! An example of such a case is supercooling, which is the property of very pure water to remain liquid even when cooled to below freezing. This phenomenon is made possible due to the fact that the environment does not contain centers or nuclei of crystallization that could trigger the formation of ice crystals. And so water remains in liquid form even when cooled to below zero degrees Celsius.

Crystallization process can be caused, for example, by gas bubbles, impurities (contaminants), or an uneven surface of the container. Without them, water will remain in a liquid state. When the crystallization process starts, you can watch the super-cooled water instantly turn into ice.

Note that “superheated” water also remains liquid even when heated above its boiling point.

3. 19 states of water

Without hesitation, name how many different states does water have? If you answered three: solid, liquid, gas, then you were wrong. Scientists distinguish at least 5 different states of water in liquid form and 14 states in frozen form.

Remember the conversation about super-cooled water? So, no matter what you do, at -38 °C even the purest super-chilled water will suddenly turn into ice. What happens as the temperature drops further? At -120 °C, something strange begins to happen to water: it becomes super viscous or viscous, like molasses, and at temperatures below -135 °C it turns into “vitreous” or “vitreous” water - a solid substance that lacks crystalline structure.

4. Water surprises physicists

At the molecular level, water is even more surprising. In 1995, a neutron scattering experiment conducted by scientists yielded an unexpected result: physicists discovered that neutrons aimed at water molecules “see” 25% fewer hydrogen protons than expected.

It turned out that at a speed of one attosecond (10 -18 seconds) an unusual quantum effect takes place, and the chemical formula of water instead H2O, becomes H1.5O!

5. Water memory

Alternative to official medicine homeopathy states that a dilute solution of a drug can have a therapeutic effect on the body, even if the dilution factor is so great that there is nothing left in the solution except water molecules. Proponents of homeopathy explain this paradox with a concept called " water memory“, according to which water at the molecular level has a “memory” of the substance that was once dissolved in it and retains the properties of the solution of the original concentration after not a single molecule of the ingredient remains in it.

An international team of scientists led by Professor Madeleine Ennis of Queen's University of Belfast, who had criticized the principles of homeopathy, conducted an experiment in 2002 to disprove the concept once and for all. The result was the opposite. After which, scientists stated that they were able to prove the reality of the effect “ water memory". However, experiments carried out under the supervision of independent experts did not bring results. Disputes about the existence of the phenomenon " water memory» continue.

Water has many other unusual properties that we did not talk about in this article. For example, the density of water changes depending on temperature (the density of ice is less than the density of water); water has a fairly high surface tension; in the liquid state, water is a complex and dynamically changing network of water clusters, and it is the behavior of the clusters that affects the structure of water, etc.

About these and many other unexpected features water can be read in the article Anomalous properties of water", authored by Martin Chaplin, professor at the University of London.

The British Royal Society of Chemistry is offering a £1,000 reward to anyone who can scientifically explain why hot water freezes faster than cold water in some cases.

“Modern science still cannot answer this seemingly simple question. Ice cream makers and bartenders use this effect in their daily work, but no one really knows why it works. This problem has been known for millennia, with philosophers such as Aristotle and Descartes thinking about it,” said Professor David Phillips, president of the British Royal Society of Chemistry, as quoted in a Society press release.

How a cook from Africa defeated a British physics professor

This is not an April Fool's joke, but a harsh physical reality. Modern science, which easily operates with galaxies and black holes, and builds giant accelerators to search for quarks and bosons, cannot explain how elementary water “works.” The school textbook clearly states that it takes more time to cool a hotter body than to cool a cold body. But for water, this law is not always observed. Aristotle drew attention to this paradox in the 4th century BC. e. Here is what the ancient Greek wrote in his book Meteorologica I: “The fact that water is preheated causes it to freeze. Therefore, many people, when they want to cool hot water faster, first put it in the sun...” In the Middle Ages, Francis Bacon and Rene Descartes tried to explain this phenomenon. Alas, neither the great philosophers nor the numerous scientists who developed classical thermophysics succeeded in this, and therefore such an inconvenient fact was “forgotten” for a long time.

And only in 1968 they “remembered” thanks to the schoolboy Erasto Mpembe from Tanzania, far from any science. While studying at culinary arts school in 1963, 13-year-old Mpembe was given the task of making ice cream. According to the technology, it was necessary to boil milk, dissolve sugar in it, cool it to room temperature, and then put it in the refrigerator to freeze. Apparently, Mpemba was not a diligent student and hesitated. Fearing that he would not make it by the end of the lesson, he put still hot milk in the refrigerator. To his surprise, it froze even earlier than the milk of his comrades, prepared according to all the rules.

When Mpemba shared his discovery with a physics teacher, he made fun of him in front of the whole class. Mpemba remembered the insult. Five years later, already a student at the University of Dar es Salaam, he was at a lecture by the famous physicist Denis G. Osborne. After the lecture, he asked the scientist a question: “If you take two identical containers with the same amount of water, one at 35 °C (95 °F) and the other at 100 °C (212 °F), and put them in the freezer, then water in a hot container will freeze faster. Why?" You can imagine the reaction of a British professor to a question from a young man from godforsaken Tanzania. He made fun of the student. However, Mpemba was ready for such an answer and challenged the scientist to a wager. Their argument culminated in an experimental test that proved Mpemba right and Osborne defeated. So the student-cooker inscribed his name in the history of science, and henceforth this phenomenon is called the "Mpemba effect". To discard it, to declare it as if "non-existent" does not work. The phenomenon exists, and, as the poet wrote, "not in the tooth with a foot."

Are dust particles and dissolved substances to blame?

Over the years, many have tried to unravel the mystery of freezing water. A whole bunch of explanations for this phenomenon have been proposed: evaporation, convection, the influence of solutes - but none of these factors can be considered definitive. A number of scientists devoted their entire lives to the Mpemba effect. James Brownridge, a member of the Department of Radiation Safety at the State University of New York, has been studying the paradox in his spare time for over a decade. After conducting hundreds of experiments, the scientist claims to have evidence of the “guilt” of hypothermia. Brownridge explains that at 0°C, water only becomes supercooled, and begins to freeze when the temperature drops below. The freezing point is regulated by impurities in the water - they change the rate of formation of ice crystals. Impurities, such as dust particles, bacteria and dissolved salts, have a characteristic nucleation temperature when ice crystals form around crystallization centers. When several elements are present in water at once, the freezing point is determined by the one that has the highest nucleation temperature.

For the experiment, Brownridge took two water samples of the same temperature and placed them in the freezer. He discovered that one of the specimens always froze before the other, presumably due to a different combination of impurities.

Brownridge says hot water cools faster because there is a greater difference between the temperature of the water and the freezer - this helps it reach its freezing point before cold water reaches its natural freezing point, which is at least 5°C lower.

However, Brownridge's reasoning raises many questions. Therefore, those who can explain the Mpemba effect in their own way have a chance to compete for a thousand pounds sterling from the British Royal Society of Chemistry.

Many researchers have put forward and are putting forward their own versions as to why hot water freezes faster than cold water. It would seem like a paradox - after all, in order to freeze, hot water first needs to cool. However, the fact remains a fact, and scientists explain it in different ways.

Major Versions

At the moment, there are several versions that explain this fact:

  1. Because hot water evaporates faster, its volume decreases. And freezing of a smaller amount of water at the same temperature occurs faster.
  2. The freezer compartment of the refrigerator has a snow liner. A container containing hot water melts the snow underneath. This improves thermal contact with the freezer.
  3. Freezing of cold water, unlike hot water, begins at the top. At the same time, convection and heat radiation, and, consequently, heat loss worsen.
  4. Cold water contains crystallization centers - substances dissolved in it. If their content in water is small, icing is difficult, although at the same time, supercooling is possible - when at sub-zero temperatures it has a liquid state.

Although in fairness we can say that this effect is not always observed. Very often, cold water freezes faster than hot water.

At what temperature does water freeze

Why does water freeze at all? It contains a certain amount of mineral or organic particles. These could be, for example, very small particles of sand, dust or clay. As the air temperature decreases, these particles are the centers around which ice crystals form.

The role of crystallization nuclei can also be played by air bubbles and cracks in the container containing water. The speed of the process of turning water into ice is largely influenced by the number of such centers - if there are many of them, the liquid freezes faster. Under normal conditions, with normal atmospheric pressure, water turns into a solid state from liquid at a temperature of 0 degrees.

The essence of the Mpemba effect

The Mpemba effect is a paradox, the essence of which is that under certain circumstances, hot water freezes faster than cold water. This phenomenon was noticed by Aristotle and Descartes. However, it was not until 1963 that Tanzanian schoolboy Erasto Mpemba determined that hot ice cream freezes in a shorter time than cold ice cream. He made this conclusion while completing a cooking assignment.

He had to dissolve sugar in boiled milk and, having cooled it, place it in the refrigerator to freeze. Apparently, Mpemba was not particularly diligent and began completing the first part of the task late. Therefore, he did not wait for the milk to cool down, and put it in the refrigerator hot. He was very surprised when it froze even faster than that of his classmates, who were doing the work in accordance with the given technology.

This fact interested the young man very much, and he began experiments with plain water. In 1969, the journal Physics Education published the results of research by Mpemba and Professor Dennis Osborne of the University of Dar Es Salaam. The effect they described was given the name Mpemba. However, even today there is no clear explanation for the phenomenon. All scientists agree that the main role in this belongs to the differences in the properties of chilled and hot water, but what exactly is unknown.

Singapore version

Physicists from one of the Singapore universities were also interested in the question of which water freezes faster - hot or cold? A team of researchers led by Xi Zhang explained this paradox precisely by the properties of water. Everyone knows the composition of water from school - an oxygen atom and two hydrogen atoms. Oxygen to some extent pulls electrons away from hydrogen, so the molecule is a certain kind of “magnet”.

As a result, certain molecules in water are slightly attracted to each other and are united by a hydrogen bond. Its strength is many times lower than a covalent bond. Singaporean researchers believe that the explanation for Mpemba's paradox lies precisely in hydrogen bonds. If water molecules are placed very tightly together, then such a strong interaction between the molecules can deform the covalent bond in the middle of the molecule itself.

But when water is heated, the bound molecules move slightly away from each other. As a result, relaxation of covalent bonds occurs in the middle of the molecules with the release of excess energy and a transition to a lower energy level. This leads to the fact that hot water begins to cool rapidly. At least, this is what theoretical calculations carried out by Singaporean scientists show.

Instantly freezing water - 5 incredible tricks: Video

The phenomenon of hot water freezing at a faster rate than cold water is known in science as the Mpemba effect. Great minds such as Aristotle, Francis Bacon and Rene Descartes pondered this paradoxical phenomenon, but for thousands of years no one has yet been able to offer a reasonable explanation for this phenomenon.

Only in 1963, a schoolboy from the Republic of Tanganyika, Erasto Mpemba, noticed this effect using the example of ice cream, but no adult gave him an explanation. Nevertheless, physicists and chemists have seriously thought about such a simple, but so incomprehensible phenomenon.

Since then, different versions have been expressed, one of which was as follows: part of the hot water first simply evaporates, and then, when less of it remains, the water freezes faster. This version, due to its simplicity, became the most popular, but did not completely satisfy scientists.

Now a team of researchers from Nanyang Technological University in Singapore, led by chemist Xi Zhang, says they have solved the age-old mystery of why warm water freezes faster than cold water. As Chinese experts found out, the secret lies in the amount of energy stored in hydrogen bonds between water molecules.

As you know, water molecules consist of one oxygen atom and two hydrogen atoms held together by covalent bonds, which at the particle level looks like an exchange of electrons. Another known fact is that hydrogen atoms are attracted to oxygen atoms from neighboring molecules - hydrogen bonds are formed.

At the same time, water molecules generally repel each other. Scientists from Singapore noticed that the warmer the water, the greater the distance between the molecules of the liquid due to the increase in repulsive forces. As a result, hydrogen bonds are stretched, and therefore store more energy. This energy is released when the water cools - the molecules approach each other. And the release of energy, as is known, means cooling.

As chemists write in their article, which can be found on the preprint website arXiv.org, in hot water hydrogen bonds are stronger than in cold water. Thus, it turns out that more energy is stored in the hydrogen bonds of hot water, which means that more of it is released when cooled to sub-zero temperatures. For this reason, hardening occurs faster.

To date, scientists have solved this mystery only theoretically. When they present convincing evidence of their version, the question of why hot water freezes faster than cold water can be considered closed.

Hello, dear lovers of interesting facts. Today we will talk to you about. But I think that the question posed in the title may seem simply absurd - but should one always undividedly trust the notorious “common sense” and not a strictly established test experiment. Let's try to figure out why hot water freezes faster than cold water?

Historical reference

That in the issue of freezing cold and hot water, “not everything is pure” was mentioned in the works of Aristotle, then similar notes were made by F. Bacon, R. Descartes and J. Black. In recent history, this effect has been given the name “Mpemba’s Paradox” - named after a schoolboy from Tanganyika, Erasto Mpemba, who asked the same question to a visiting physics professor.

The boy’s question did not arise out of nowhere, but from purely personal observations of the process of cooling ice cream mixtures in the kitchen. Of course, the classmates who were present there, together with the school teacher, made Mpemba laugh - however, after an experimental test personally by Professor D. Osborne, the desire to make fun of Erasto “evaporated” from them. Moreover, Mpemba, together with a professor, published a detailed description of this effect in Physics Education in 1969 - and since then the above-mentioned name has been fixed in the scientific literature.

What is the essence of the phenomenon?

The setup of the experiment is quite simple: all other things being equal, identical thin-walled vessels are tested, containing strictly equal amounts of water, differing only in temperature. The vessels are loaded into the refrigerator, after which the time until ice forms in each of them is recorded. The paradox is that in a vessel with an initially hotter liquid this happens faster.


How does modern physics explain this?

The paradox does not have a universal explanation, since several parallel processes occur together, the contribution of which may vary depending on the specific initial conditions - but with a uniform result:

  • the ability of a liquid to supercool - initially cold water is more prone to supercooling, i.e. remains liquid when its temperature is already below freezing point
  • accelerated cooling - steam from hot water is transformed into ice microcrystals, which, when falling back, accelerate the process, working as an additional “external heat exchanger”
  • insulation effect - unlike hot water, cold water freezes from above, which leads to a decrease in heat transfer by convection and radiation

There are a number of other explanations (the last time the British Royal Society of Chemistry held a competition for the best hypothesis was recently, in 2012) - but there is still no unambiguous theory for all cases of combinations of input conditions...