Diseases, endocrinologists. MRI
Site search

Rules for adding powers with different bases. Rules for subtracting and adding powers

First level

Degree and its properties. The Comprehensive Guide (2019)

Why are degrees needed? Where will you need them? Why should you take the time to study them?

To learn everything about degrees, what they are needed for, and how to use your knowledge in everyday life, read this article.

And, of course, knowledge of degrees will bring you closer to successfully passing the Unified State Exam or Unified State Exam and to entering the university of your dreams.

Let's go... (Let's go!)

Important note! If you see gobbledygook instead of formulas, clear your cache. To do this, press CTRL+F5 (on Windows) or Cmd+R (on Mac).

FIRST LEVEL

Exponentiation is a mathematical operation just like addition, subtraction, multiplication or division.

Now I will explain everything in human language using very simple examples. Be careful. The examples are elementary, but explain important things.

Let's start with addition.

There is nothing to explain here. You already know everything: there are eight of us. Everyone has two bottles of cola. How much cola is there? That's right - 16 bottles.

Now multiplication.

The same example with cola can be written differently: . Mathematicians are cunning and lazy people. They first notice some patterns, and then figure out a way to “count” them faster. In our case, they noticed that each of the eight people had the same number of cola bottles and came up with a technique called multiplication. Agree, it is considered easier and faster than.


So, to count faster, easier and without errors, you just need to remember multiplication table. Of course, you can do everything slower, more difficult and with mistakes! But…

Here is the multiplication table. Repeat.

And another, more beautiful one:

What other clever counting tricks have lazy mathematicians come up with? Right - raising a number to a power.

Raising a number to a power

If you need to multiply a number by itself five times, then mathematicians say that you need to raise that number to the fifth power. For example, . Mathematicians remember that two to the fifth power is... And they solve such problems in their heads - faster, easier and without mistakes.

All you need to do is remember what is highlighted in color in the table of powers of numbers. Believe me, this will make your life a lot easier.

By the way, why is it called the second degree? square numbers, and the third - cube? What does it mean? Very good question. Now you will have both squares and cubes.

Real life example #1

Let's start with the square or the second power of the number.

Imagine a square pool measuring one meter by one meter. The pool is at your dacha. It's hot and I really want to swim. But... the pool has no bottom! You need to cover the bottom of the pool with tiles. How many tiles do you need? In order to determine this, you need to know the bottom area of ​​the pool.

You can simply calculate by pointing your finger that the bottom of the pool consists of meter by meter cubes. If you have tiles one meter by one meter, you will need pieces. It's easy... But where have you seen such tiles? The tile will most likely be cm by cm. And then you will be tortured by “counting with your finger.” Then you have to multiply. So, on one side of the bottom of the pool we will fit tiles (pieces) and on the other, too, tiles. Multiply by and you get tiles ().

Did you notice that to determine the area of ​​the pool bottom we multiplied the same number by itself? What does it mean? Since we are multiplying the same number, we can use the “exponentiation” technique. (Of course, when you have only two numbers, you still need to multiply them or raise them to a power. But if you have a lot of them, then raising them to a power is much easier and there are also fewer errors in calculations. For the Unified State Exam, this is very important).
So, thirty to the second power will be (). Or we can say that thirty squared will be. In other words, the second power of a number can always be represented as a square. And vice versa, if you see a square, it is ALWAYS the second power of some number. A square is an image of the second power of a number.

Real life example #2

Here's a task for you: count how many squares there are on the chessboard using the square of the number... On one side of the cells and on the other too. To calculate their number, you need to multiply eight by eight or... if you notice that a chessboard is a square with a side, then you can square eight. You will get cells. () So?

Real life example #3

Now the cube or the third power of a number. The same pool. But now you need to find out how much water will have to be poured into this pool. You need to calculate the volume. (Volumes and liquids, by the way, are measured in cubic meters. Unexpected, right?) Draw a pool: the bottom is a meter in size and a meter deep, and try to count how many cubes measuring a meter by a meter will fit into your pool.

Just point your finger and count! One, two, three, four...twenty-two, twenty-three...How many did you get? Not lost? Is it difficult to count with your finger? So that! Take an example from mathematicians. They are lazy, so they noticed that in order to calculate the volume of the pool, you need to multiply its length, width and height by each other. In our case, the volume of the pool will be equal to cubes... Easier, right?

Now imagine how lazy and cunning mathematicians are if they simplified this too. We reduced everything to one action. They noticed that the length, width and height are equal and that the same number is multiplied by itself... What does this mean? This means you can take advantage of the degree. So, what you once counted with your finger, they do in one action: three cubed is equal. It is written like this: .

All that remains is remember the table of degrees. Unless, of course, you are as lazy and cunning as mathematicians. If you like to work hard and make mistakes, you can continue to count with your finger.

Well, to finally convince you that degrees were invented by quitters and cunning people to solve their life problems, and not to create problems for you, here are a couple more examples from life.

Real life example #4

You have a million rubles. At the beginning of each year, for every million you make, you make another million. That is, every million you have doubles at the beginning of each year. How much money will you have in years? If you are sitting now and “counting with your finger,” then you are a very hardworking person and... stupid. But most likely you will give an answer in a couple of seconds, because you are smart! So, in the first year - two multiplied by two... in the second year - what happened, by two more, in the third year... Stop! You noticed that the number is multiplied by itself times. So two to the fifth power is a million! Now imagine that you have a competition and the one who can count the fastest will get these millions... It’s worth remembering the powers of numbers, don’t you think?

Real life example #5

You have a million. At the beginning of each year, for every million you make, you earn two more. Great isn't it? Every million is tripled. How much money will you have in a year? Let's count. The first year - multiply by, then the result by another... It’s already boring, because you already understood everything: three is multiplied by itself times. So to the fourth power it is equal to a million. You just have to remember that three to the fourth power is or.

Now you know that by raising a number to a power you will make your life a lot easier. Let's take a further look at what you can do with degrees and what you need to know about them.

Terms and concepts... so as not to get confused

So, first, let's define the concepts. What do you think, what is an exponent? It's very simple - it's the number that is "at the top" of the power of the number. Not scientific, but clear and easy to remember...

Well, at the same time, what such a degree basis? Even simpler - this is the number that is located below, at the base.

Here's a drawing for good measure.

Well, in general terms, in order to generalize and remember better... A degree with a base “ ” and an exponent “ ” is read as “to the degree” and is written as follows:

Power of a number with natural exponent

You probably already guessed: because the exponent is a natural number. Yes, but what is it natural number? Elementary! Natural numbers are those numbers that are used in counting when listing objects: one, two, three... When we count objects, we do not say: “minus five,” “minus six,” “minus seven.” We also do not say: “one third”, or “zero point five”. These are not natural numbers. What numbers do you think these are?

Numbers like “minus five”, “minus six”, “minus seven” refer to whole numbers. In general, integers include all natural numbers, numbers opposite to natural numbers (that is, taken with a minus sign), and number. Zero is easy to understand - it is when there is nothing. What do negative (“minus”) numbers mean? But they were invented primarily to indicate debts: if you have a balance on your phone in rubles, this means that you owe the operator rubles.

All fractions are rational numbers. How did they arise, do you think? Very simple. Several thousand years ago, our ancestors discovered that they lacked natural numbers to measure length, weight, area, etc. And they came up with rational numbers... Interesting, isn't it?

There are also irrational numbers. What are these numbers? In short, it's an infinite decimal fraction. For example, if you divide the circumference of a circle by its diameter, you get an irrational number.

Summary:

Let us define the concept of a degree whose exponent is a natural number (i.e., integer and positive).

  1. Any number to the first power is equal to itself:
  2. To square a number means to multiply it by itself:
  3. To cube a number means to multiply it by itself three times:

Definition. Raising a number to a natural power means multiplying the number by itself times:
.

Properties of degrees

Where did these properties come from? I will show you now.

Let's see: what is it And ?

A-priory:

How many multipliers are there in total?

It’s very simple: we added multipliers to the factors, and the result is multipliers.

But by definition, this is a power of a number with an exponent, that is: , which is what needed to be proven.

Example: Simplify the expression.

Solution:

Example: Simplify the expression.

Solution: It is important to note that in our rule Necessarily there must be the same reasons!
Therefore, we combine the powers with the base, but it remains a separate factor:

only for the product of powers!

Under no circumstances can you write that.

2. that's it th power of a number

Just as with the previous property, let us turn to the definition of degree:

It turns out that the expression is multiplied by itself times, that is, according to the definition, this is the th power of the number:

In essence, this can be called “taking the indicator out of brackets.” But you can never do this in total:

Let's remember the abbreviated multiplication formulas: how many times did we want to write?

But this is not true, after all.

Power with negative base

Up to this point, we have only discussed what the exponent should be.

But what should be the basis?

In powers of natural indicator the basis may be any number. Indeed, we can multiply any numbers by each other, be they positive, negative, or even.

Let's think about which signs ("" or "") will have degrees of positive and negative numbers?

For example, is the number positive or negative? A? ? With the first one, everything is clear: no matter how many positive numbers we multiply by each other, the result will be positive.

But the negative ones are a little more interesting. We remember the simple rule from 6th grade: “minus for minus gives a plus.” That is, or. But if we multiply by, it works.

Determine for yourself what sign the following expressions will have:

1) 2) 3)
4) 5) 6)

Did you manage?

Here are the answers: In the first four examples, I hope everything is clear? We simply look at the base and exponent and apply the appropriate rule.

1) ; 2) ; 3) ; 4) ; 5) ; 6) .

In example 5) everything is also not as scary as it seems: after all, it doesn’t matter what the base is equal to - the degree is even, which means the result will always be positive.

Well, except when the base is zero. The base is not equal, is it? Obviously not, since (because).

Example 6) is no longer so simple!

6 examples to practice

Analysis of the solution 6 examples

If we ignore the eighth power, what do we see here? Let's remember the 7th grade program. So, do you remember? This is the formula for abbreviated multiplication, namely the difference of squares! We get:

Let's look carefully at the denominator. It looks a lot like one of the numerator factors, but what's wrong? The order of the terms is wrong. If they were reversed, the rule could apply.

But how to do that? It turns out that it’s very easy: the even degree of the denominator helps us here.

Magically the terms changed places. This “phenomenon” applies to any expression to an even degree: we can easily change the signs in parentheses.

But it's important to remember: all signs change at the same time!

Let's go back to the example:

And again the formula:

Whole we call the natural numbers, their opposites (that is, taken with the " " sign) and the number.

positive integer, and it is no different from natural, then everything looks exactly like in the previous section.

Now let's look at new cases. Let's start with an indicator equal to.

Any number to the zero power is equal to one:

As always, let us ask ourselves: why is this so?

Let's consider some degree with a base. Take, for example, and multiply by:

So, we multiplied the number by, and we got the same thing as it was - . What number should you multiply by so that nothing changes? That's right, on. Means.

We can do the same with an arbitrary number:

Let's repeat the rule:

Any number to the zero power is equal to one.

But there are exceptions to many rules. And here it is also there - this is a number (as a base).

On the one hand, it must be equal to any degree - no matter how much you multiply zero by itself, you will still get zero, this is clear. But on the other hand, like any number to the zero power, it must be equal. So how much of this is true? The mathematicians decided not to get involved and refused to raise zero to the zero power. That is, now we cannot not only divide by zero, but also raise it to the zero power.

Let's move on. In addition to natural numbers and numbers, integers also include negative numbers. To understand what a negative power is, let’s do as last time: multiply some normal number by the same number to a negative power:

From here it’s easy to express what you’re looking for:

Now let’s extend the resulting rule to an arbitrary degree:

So, let's formulate a rule:

A number with a negative power is the reciprocal of the same number with a positive power. But at the same time The base cannot be null:(because you can’t divide by).

Let's summarize:

I. The expression is not defined in the case. If, then.

II. Any number to the zero power is equal to one: .

III. A number not equal to zero to a negative power is the inverse of the same number to a positive power: .

Tasks for independent solution:

Well, as usual, examples for independent solutions:

Analysis of problems for independent solution:

I know, I know, the numbers are scary, but on the Unified State Exam you have to be prepared for anything! Solve these examples or analyze their solutions if you couldn’t solve them and you will learn to cope with them easily in the exam!

Let's continue to expand the range of numbers “suitable” as an exponent.

Now let's consider rational numbers. What numbers are called rational?

Answer: everything that can be represented as a fraction, where and are integers, and.

To understand what it is "fractional degree", consider the fraction:

Let's raise both sides of the equation to a power:

Now let's remember the rule about "degree to degree":

What number must be raised to a power to get?

This formulation is the definition of the root of the th degree.

Let me remind you: the root of the th power of a number () is a number that, when raised to a power, is equal to.

That is, the root of the th power is the inverse operation of raising to a power: .

It turns out that. Obviously, this special case can be expanded: .

Now we add the numerator: what is it? The answer is easy to obtain using the power-to-power rule:

But can the base be any number? After all, the root cannot be extracted from all numbers.

None!

Let us remember the rule: any number raised to an even power is a positive number. That is, it is impossible to extract even roots from negative numbers!

This means that such numbers cannot be raised to a fractional power with an even denominator, that is, the expression does not make sense.

What about the expression?

But here a problem arises.

The number can be represented in the form of other, reducible fractions, for example, or.

And it turns out that it exists, but does not exist, but these are just two different records of the same number.

Or another example: once, then you can write it down. But if we write down the indicator differently, we will again get into trouble: (that is, we got a completely different result!).

To avoid such paradoxes, we consider only positive base exponent with fractional exponent.

So if:

  • - natural number;
  • - integer;

Examples:

Rational exponents are very useful for transforming expressions with roots, for example:

5 examples to practice

Analysis of 5 examples for training

Well, now comes the hardest part. Now we'll figure it out degree with irrational exponent.

All the rules and properties of degrees here are exactly the same as for a degree with a rational exponent, with the exception

After all, by definition, irrational numbers are numbers that cannot be represented as a fraction, where and are integers (that is, irrational numbers are all real numbers except rational ones).

When studying degrees with natural, integer and rational exponents, each time we created a certain “image”, “analogy”, or description in more familiar terms.

For example, a degree with a natural exponent is a number multiplied by itself several times;

...number to the zeroth power- this is, as it were, a number multiplied by itself once, that is, they have not yet begun to multiply it, which means that the number itself has not even appeared yet - therefore the result is only a certain “blank number”, namely a number;

...negative integer degree- it’s as if some “reverse process” had occurred, that is, the number was not multiplied by itself, but divided.

By the way, in science a degree with a complex exponent is often used, that is, the exponent is not even a real number.

But at school we don’t think about such difficulties; you will have the opportunity to comprehend these new concepts at the institute.

WHERE WE ARE SURE YOU WILL GO! (if you learn to solve such examples :))

For example:

Decide for yourself:

Analysis of solutions:

1. Let's start with the usual rule for raising a power to a power:

Now look at the indicator. Doesn't he remind you of anything? Let us recall the formula for abbreviated multiplication of difference of squares:

In this case,

It turns out that:

Answer: .

2. We reduce fractions in exponents to the same form: either both decimals or both ordinary ones. We get, for example:

Answer: 16

3. Nothing special, we use the usual properties of degrees:

ADVANCED LEVEL

Determination of degree

A degree is an expression of the form: , where:

  • degree base;
  • - exponent.

Degree with natural indicator (n = 1, 2, 3,...)

Raising a number to the natural power n means multiplying the number by itself times:

Degree with an integer exponent (0, ±1, ±2,...)

If the exponent is positive integer number:

Construction to the zero degree:

The expression is indefinite, because, on the one hand, to any degree is this, and on the other hand, any number to the th degree is this.

If the exponent is negative integer number:

(because you can’t divide by).

Once again about zeros: the expression is not defined in the case. If, then.

Examples:

Power with rational exponent

  • - natural number;
  • - integer;

Examples:

Properties of degrees

To make it easier to solve problems, let’s try to understand: where did these properties come from? Let's prove them.

Let's see: what is and?

A-priory:

So, on the right side of this expression we get the following product:

But by definition it is a power of a number with an exponent, that is:

Q.E.D.

Example : Simplify the expression.

Solution : .

Example : Simplify the expression.

Solution : It is important to note that in our rule Necessarily there must be the same reasons. Therefore, we combine the powers with the base, but it remains a separate factor:

Another important note: this rule - only for product of powers!

Under no circumstances can you write that.

Just as with the previous property, let us turn to the definition of degree:

Let's regroup this work like this:

It turns out that the expression is multiplied by itself times, that is, according to the definition, this is the th power of the number:

In essence, this can be called “taking the indicator out of brackets.” But you can never do this in total: !

Let's remember the abbreviated multiplication formulas: how many times did we want to write? But this is not true, after all.

Power with a negative base.

Up to this point we have only discussed what it should be like index degrees. But what should be the basis? In powers of natural indicator the basis may be any number .

Indeed, we can multiply any numbers by each other, be they positive, negative, or even. Let's think about which signs ("" or "") will have degrees of positive and negative numbers?

For example, is the number positive or negative? A? ?

With the first one, everything is clear: no matter how many positive numbers we multiply by each other, the result will be positive.

But the negative ones are a little more interesting. We remember the simple rule from 6th grade: “minus for minus gives a plus.” That is, or. But if we multiply by (), we get - .

And so on ad infinitum: with each subsequent multiplication the sign will change. The following simple rules can be formulated:

  1. even degree, - number positive.
  2. Negative number raised to odd degree, - number negative.
  3. A positive number to any degree is a positive number.
  4. Zero to any power is equal to zero.

Determine for yourself what sign the following expressions will have:

1. 2. 3.
4. 5. 6.

Did you manage? Here are the answers:

1) ; 2) ; 3) ; 4) ; 5) ; 6) .

In the first four examples, I hope everything is clear? We simply look at the base and exponent and apply the appropriate rule.

In example 5) everything is also not as scary as it seems: after all, it doesn’t matter what the base is equal to - the degree is even, which means the result will always be positive. Well, except when the base is zero. The base is not equal, is it? Obviously not, since (because).

Example 6) is no longer so simple. Here you need to find out which is less: or? If we remember that, it becomes clear that, which means the base is less than zero. That is, we apply rule 2: the result will be negative.

And again we use the definition of degree:

Everything is as usual - we write down the definition of degrees and divide them by each other, divide them into pairs and get:

Before we look at the last rule, let's solve a few examples.

Calculate the expressions:

Solutions :

If we ignore the eighth power, what do we see here? Let's remember the 7th grade program. So, do you remember? This is the formula for abbreviated multiplication, namely the difference of squares!

We get:

Let's look carefully at the denominator. It looks a lot like one of the numerator factors, but what's wrong? The order of the terms is wrong. If they were reversed, rule 3 could apply. But how? It turns out that it’s very easy: the even degree of the denominator helps us here.

If you multiply it by, nothing changes, right? But now it turns out like this:

Magically the terms changed places. This “phenomenon” applies to any expression to an even degree: we can easily change the signs in parentheses. But it's important to remember: All signs change at the same time! You can’t replace it with by changing only one disadvantage we don’t like!

Let's go back to the example:

And again the formula:

So now the last rule:

How will we prove it? Of course, as usual: let’s expand on the concept of degree and simplify it:

Well, now let's open the brackets. How many letters are there in total? times by multipliers - what does this remind you of? This is nothing more than a definition of an operation multiplication: There were only multipliers there. That is, this, by definition, is a power of a number with an exponent:

Example:

Degree with irrational exponent

In addition to information about degrees for the average level, we will analyze the degree with an irrational exponent. All the rules and properties of degrees here are exactly the same as for a degree with a rational exponent, with the exception - after all, by definition, irrational numbers are numbers that cannot be represented as a fraction, where and are integers (that is, irrational numbers are all real numbers except rational numbers).

When studying degrees with natural, integer and rational exponents, each time we created a certain “image”, “analogy”, or description in more familiar terms. For example, a degree with a natural exponent is a number multiplied by itself several times; a number to the zero power is, as it were, a number multiplied by itself once, that is, they have not yet begun to multiply it, which means that the number itself has not even appeared yet - therefore the result is only a certain “blank number”, namely a number; a degree with an integer negative exponent - it’s as if some “reverse process” had occurred, that is, the number was not multiplied by itself, but divided.

It is extremely difficult to imagine a degree with an irrational exponent (just as it is difficult to imagine a 4-dimensional space). It is rather a purely mathematical object that mathematicians created to extend the concept of degree to the entire space of numbers.

By the way, in science a degree with a complex exponent is often used, that is, the exponent is not even a real number. But at school we don’t think about such difficulties; you will have the opportunity to comprehend these new concepts at the institute.

So what do we do if we see an irrational exponent? We are trying our best to get rid of it! :)

For example:

Decide for yourself:

1) 2) 3)

Answers:

  1. Let's remember the difference of squares formula. Answer: .
  2. We reduce the fractions to the same form: either both decimals or both ordinary ones. We get, for example: .
  3. Nothing special, we use the usual properties of degrees:

SUMMARY OF THE SECTION AND BASIC FORMULAS

Degree called an expression of the form: , where:

Degree with an integer exponent

a degree whose exponent is a natural number (i.e., integer and positive).

Power with rational exponent

degree, the exponent of which is negative and fractional numbers.

Degree with irrational exponent

a degree whose exponent is an infinite decimal fraction or root.

Properties of degrees

Features of degrees.

  • Negative number raised to even degree, - number positive.
  • Negative number raised to odd degree, - number negative.
  • A positive number to any degree is a positive number.
  • Zero is equal to any power.
  • Any number to the zero power is equal.

NOW YOU HAVE THE WORD...

How do you like the article? Write below in the comments whether you liked it or not.

Tell us about your experience using degree properties.

Perhaps you have questions. Or suggestions.

Write in the comments.

And good luck on your exams!

First level

Degree and its properties. The Comprehensive Guide (2019)

Why are degrees needed? Where will you need them? Why should you take the time to study them?

To learn everything about degrees, what they are needed for, and how to use your knowledge in everyday life, read this article.

And, of course, knowledge of degrees will bring you closer to successfully passing the Unified State Exam or Unified State Exam and to entering the university of your dreams.

Let's go... (Let's go!)

Important note! If you see gobbledygook instead of formulas, clear your cache. To do this, press CTRL+F5 (on Windows) or Cmd+R (on Mac).

FIRST LEVEL

Exponentiation is a mathematical operation just like addition, subtraction, multiplication or division.

Now I will explain everything in human language using very simple examples. Be careful. The examples are elementary, but explain important things.

Let's start with addition.

There is nothing to explain here. You already know everything: there are eight of us. Everyone has two bottles of cola. How much cola is there? That's right - 16 bottles.

Now multiplication.

The same example with cola can be written differently: . Mathematicians are cunning and lazy people. They first notice some patterns, and then figure out a way to “count” them faster. In our case, they noticed that each of the eight people had the same number of cola bottles and came up with a technique called multiplication. Agree, it is considered easier and faster than.


So, to count faster, easier and without errors, you just need to remember multiplication table. Of course, you can do everything slower, more difficult and with mistakes! But…

Here is the multiplication table. Repeat.

And another, more beautiful one:

What other clever counting tricks have lazy mathematicians come up with? Right - raising a number to a power.

Raising a number to a power

If you need to multiply a number by itself five times, then mathematicians say that you need to raise that number to the fifth power. For example, . Mathematicians remember that two to the fifth power is... And they solve such problems in their heads - faster, easier and without mistakes.

All you need to do is remember what is highlighted in color in the table of powers of numbers. Believe me, this will make your life a lot easier.

By the way, why is it called the second degree? square numbers, and the third - cube? What does it mean? Very good question. Now you will have both squares and cubes.

Real life example #1

Let's start with the square or the second power of the number.

Imagine a square pool measuring one meter by one meter. The pool is at your dacha. It's hot and I really want to swim. But... the pool has no bottom! You need to cover the bottom of the pool with tiles. How many tiles do you need? In order to determine this, you need to know the bottom area of ​​the pool.

You can simply calculate by pointing your finger that the bottom of the pool consists of meter by meter cubes. If you have tiles one meter by one meter, you will need pieces. It's easy... But where have you seen such tiles? The tile will most likely be cm by cm. And then you will be tortured by “counting with your finger.” Then you have to multiply. So, on one side of the bottom of the pool we will fit tiles (pieces) and on the other, too, tiles. Multiply by and you get tiles ().

Did you notice that to determine the area of ​​the pool bottom we multiplied the same number by itself? What does it mean? Since we are multiplying the same number, we can use the “exponentiation” technique. (Of course, when you have only two numbers, you still need to multiply them or raise them to a power. But if you have a lot of them, then raising them to a power is much easier and there are also fewer errors in calculations. For the Unified State Exam, this is very important).
So, thirty to the second power will be (). Or we can say that thirty squared will be. In other words, the second power of a number can always be represented as a square. And vice versa, if you see a square, it is ALWAYS the second power of some number. A square is an image of the second power of a number.

Real life example #2

Here's a task for you: count how many squares there are on the chessboard using the square of the number... On one side of the cells and on the other too. To calculate their number, you need to multiply eight by eight or... if you notice that a chessboard is a square with a side, then you can square eight. You will get cells. () So?

Real life example #3

Now the cube or the third power of a number. The same pool. But now you need to find out how much water will have to be poured into this pool. You need to calculate the volume. (Volumes and liquids, by the way, are measured in cubic meters. Unexpected, right?) Draw a pool: the bottom is a meter in size and a meter deep, and try to count how many cubes measuring a meter by a meter will fit into your pool.

Just point your finger and count! One, two, three, four...twenty-two, twenty-three...How many did you get? Not lost? Is it difficult to count with your finger? So that! Take an example from mathematicians. They are lazy, so they noticed that in order to calculate the volume of the pool, you need to multiply its length, width and height by each other. In our case, the volume of the pool will be equal to cubes... Easier, right?

Now imagine how lazy and cunning mathematicians are if they simplified this too. We reduced everything to one action. They noticed that the length, width and height are equal and that the same number is multiplied by itself... What does this mean? This means you can take advantage of the degree. So, what you once counted with your finger, they do in one action: three cubed is equal. It is written like this: .

All that remains is remember the table of degrees. Unless, of course, you are as lazy and cunning as mathematicians. If you like to work hard and make mistakes, you can continue to count with your finger.

Well, to finally convince you that degrees were invented by quitters and cunning people to solve their life problems, and not to create problems for you, here are a couple more examples from life.

Real life example #4

You have a million rubles. At the beginning of each year, for every million you make, you make another million. That is, every million you have doubles at the beginning of each year. How much money will you have in years? If you are sitting now and “counting with your finger,” then you are a very hardworking person and... stupid. But most likely you will give an answer in a couple of seconds, because you are smart! So, in the first year - two multiplied by two... in the second year - what happened, by two more, in the third year... Stop! You noticed that the number is multiplied by itself times. So two to the fifth power is a million! Now imagine that you have a competition and the one who can count the fastest will get these millions... It’s worth remembering the powers of numbers, don’t you think?

Real life example #5

You have a million. At the beginning of each year, for every million you make, you earn two more. Great isn't it? Every million is tripled. How much money will you have in a year? Let's count. The first year - multiply by, then the result by another... It’s already boring, because you already understood everything: three is multiplied by itself times. So to the fourth power it is equal to a million. You just have to remember that three to the fourth power is or.

Now you know that by raising a number to a power you will make your life a lot easier. Let's take a further look at what you can do with degrees and what you need to know about them.

Terms and concepts... so as not to get confused

So, first, let's define the concepts. What do you think, what is an exponent? It's very simple - it's the number that is "at the top" of the power of the number. Not scientific, but clear and easy to remember...

Well, at the same time, what such a degree basis? Even simpler - this is the number that is located below, at the base.

Here's a drawing for good measure.

Well, in general terms, in order to generalize and remember better... A degree with a base “ ” and an exponent “ ” is read as “to the degree” and is written as follows:

Power of a number with natural exponent

You probably already guessed: because the exponent is a natural number. Yes, but what is it natural number? Elementary! Natural numbers are those numbers that are used in counting when listing objects: one, two, three... When we count objects, we do not say: “minus five,” “minus six,” “minus seven.” We also do not say: “one third”, or “zero point five”. These are not natural numbers. What numbers do you think these are?

Numbers like “minus five”, “minus six”, “minus seven” refer to whole numbers. In general, integers include all natural numbers, numbers opposite to natural numbers (that is, taken with a minus sign), and number. Zero is easy to understand - it is when there is nothing. What do negative (“minus”) numbers mean? But they were invented primarily to indicate debts: if you have a balance on your phone in rubles, this means that you owe the operator rubles.

All fractions are rational numbers. How did they arise, do you think? Very simple. Several thousand years ago, our ancestors discovered that they lacked natural numbers to measure length, weight, area, etc. And they came up with rational numbers... Interesting, isn't it?

There are also irrational numbers. What are these numbers? In short, it's an infinite decimal fraction. For example, if you divide the circumference of a circle by its diameter, you get an irrational number.

Summary:

Let us define the concept of a degree whose exponent is a natural number (i.e., integer and positive).

  1. Any number to the first power is equal to itself:
  2. To square a number means to multiply it by itself:
  3. To cube a number means to multiply it by itself three times:

Definition. Raising a number to a natural power means multiplying the number by itself times:
.

Properties of degrees

Where did these properties come from? I will show you now.

Let's see: what is it And ?

A-priory:

How many multipliers are there in total?

It’s very simple: we added multipliers to the factors, and the result is multipliers.

But by definition, this is a power of a number with an exponent, that is: , which is what needed to be proven.

Example: Simplify the expression.

Solution:

Example: Simplify the expression.

Solution: It is important to note that in our rule Necessarily there must be the same reasons!
Therefore, we combine the powers with the base, but it remains a separate factor:

only for the product of powers!

Under no circumstances can you write that.

2. that's it th power of a number

Just as with the previous property, let us turn to the definition of degree:

It turns out that the expression is multiplied by itself times, that is, according to the definition, this is the th power of the number:

In essence, this can be called “taking the indicator out of brackets.” But you can never do this in total:

Let's remember the abbreviated multiplication formulas: how many times did we want to write?

But this is not true, after all.

Power with negative base

Up to this point, we have only discussed what the exponent should be.

But what should be the basis?

In powers of natural indicator the basis may be any number. Indeed, we can multiply any numbers by each other, be they positive, negative, or even.

Let's think about which signs ("" or "") will have degrees of positive and negative numbers?

For example, is the number positive or negative? A? ? With the first one, everything is clear: no matter how many positive numbers we multiply by each other, the result will be positive.

But the negative ones are a little more interesting. We remember the simple rule from 6th grade: “minus for minus gives a plus.” That is, or. But if we multiply by, it works.

Determine for yourself what sign the following expressions will have:

1) 2) 3)
4) 5) 6)

Did you manage?

Here are the answers: In the first four examples, I hope everything is clear? We simply look at the base and exponent and apply the appropriate rule.

1) ; 2) ; 3) ; 4) ; 5) ; 6) .

In example 5) everything is also not as scary as it seems: after all, it doesn’t matter what the base is equal to - the degree is even, which means the result will always be positive.

Well, except when the base is zero. The base is not equal, is it? Obviously not, since (because).

Example 6) is no longer so simple!

6 examples to practice

Analysis of the solution 6 examples

If we ignore the eighth power, what do we see here? Let's remember the 7th grade program. So, do you remember? This is the formula for abbreviated multiplication, namely the difference of squares! We get:

Let's look carefully at the denominator. It looks a lot like one of the numerator factors, but what's wrong? The order of the terms is wrong. If they were reversed, the rule could apply.

But how to do that? It turns out that it’s very easy: the even degree of the denominator helps us here.

Magically the terms changed places. This “phenomenon” applies to any expression to an even degree: we can easily change the signs in parentheses.

But it's important to remember: all signs change at the same time!

Let's go back to the example:

And again the formula:

Whole we call the natural numbers, their opposites (that is, taken with the " " sign) and the number.

positive integer, and it is no different from natural, then everything looks exactly like in the previous section.

Now let's look at new cases. Let's start with an indicator equal to.

Any number to the zero power is equal to one:

As always, let us ask ourselves: why is this so?

Let's consider some degree with a base. Take, for example, and multiply by:

So, we multiplied the number by, and we got the same thing as it was - . What number should you multiply by so that nothing changes? That's right, on. Means.

We can do the same with an arbitrary number:

Let's repeat the rule:

Any number to the zero power is equal to one.

But there are exceptions to many rules. And here it is also there - this is a number (as a base).

On the one hand, it must be equal to any degree - no matter how much you multiply zero by itself, you will still get zero, this is clear. But on the other hand, like any number to the zero power, it must be equal. So how much of this is true? The mathematicians decided not to get involved and refused to raise zero to the zero power. That is, now we cannot not only divide by zero, but also raise it to the zero power.

Let's move on. In addition to natural numbers and numbers, integers also include negative numbers. To understand what a negative power is, let’s do as last time: multiply some normal number by the same number to a negative power:

From here it’s easy to express what you’re looking for:

Now let’s extend the resulting rule to an arbitrary degree:

So, let's formulate a rule:

A number with a negative power is the reciprocal of the same number with a positive power. But at the same time The base cannot be null:(because you can’t divide by).

Let's summarize:

I. The expression is not defined in the case. If, then.

II. Any number to the zero power is equal to one: .

III. A number not equal to zero to a negative power is the inverse of the same number to a positive power: .

Tasks for independent solution:

Well, as usual, examples for independent solutions:

Analysis of problems for independent solution:

I know, I know, the numbers are scary, but on the Unified State Exam you have to be prepared for anything! Solve these examples or analyze their solutions if you couldn’t solve them and you will learn to cope with them easily in the exam!

Let's continue to expand the range of numbers “suitable” as an exponent.

Now let's consider rational numbers. What numbers are called rational?

Answer: everything that can be represented as a fraction, where and are integers, and.

To understand what it is "fractional degree", consider the fraction:

Let's raise both sides of the equation to a power:

Now let's remember the rule about "degree to degree":

What number must be raised to a power to get?

This formulation is the definition of the root of the th degree.

Let me remind you: the root of the th power of a number () is a number that, when raised to a power, is equal to.

That is, the root of the th power is the inverse operation of raising to a power: .

It turns out that. Obviously, this special case can be expanded: .

Now we add the numerator: what is it? The answer is easy to obtain using the power-to-power rule:

But can the base be any number? After all, the root cannot be extracted from all numbers.

None!

Let us remember the rule: any number raised to an even power is a positive number. That is, it is impossible to extract even roots from negative numbers!

This means that such numbers cannot be raised to a fractional power with an even denominator, that is, the expression does not make sense.

What about the expression?

But here a problem arises.

The number can be represented in the form of other, reducible fractions, for example, or.

And it turns out that it exists, but does not exist, but these are just two different records of the same number.

Or another example: once, then you can write it down. But if we write down the indicator differently, we will again get into trouble: (that is, we got a completely different result!).

To avoid such paradoxes, we consider only positive base exponent with fractional exponent.

So if:

  • - natural number;
  • - integer;

Examples:

Rational exponents are very useful for transforming expressions with roots, for example:

5 examples to practice

Analysis of 5 examples for training

Well, now comes the hardest part. Now we'll figure it out degree with irrational exponent.

All the rules and properties of degrees here are exactly the same as for a degree with a rational exponent, with the exception

After all, by definition, irrational numbers are numbers that cannot be represented as a fraction, where and are integers (that is, irrational numbers are all real numbers except rational ones).

When studying degrees with natural, integer and rational exponents, each time we created a certain “image”, “analogy”, or description in more familiar terms.

For example, a degree with a natural exponent is a number multiplied by itself several times;

...number to the zeroth power- this is, as it were, a number multiplied by itself once, that is, they have not yet begun to multiply it, which means that the number itself has not even appeared yet - therefore the result is only a certain “blank number”, namely a number;

...negative integer degree- it’s as if some “reverse process” had occurred, that is, the number was not multiplied by itself, but divided.

By the way, in science a degree with a complex exponent is often used, that is, the exponent is not even a real number.

But at school we don’t think about such difficulties; you will have the opportunity to comprehend these new concepts at the institute.

WHERE WE ARE SURE YOU WILL GO! (if you learn to solve such examples :))

For example:

Decide for yourself:

Analysis of solutions:

1. Let's start with the usual rule for raising a power to a power:

Now look at the indicator. Doesn't he remind you of anything? Let us recall the formula for abbreviated multiplication of difference of squares:

In this case,

It turns out that:

Answer: .

2. We reduce fractions in exponents to the same form: either both decimals or both ordinary ones. We get, for example:

Answer: 16

3. Nothing special, we use the usual properties of degrees:

ADVANCED LEVEL

Determination of degree

A degree is an expression of the form: , where:

  • degree base;
  • - exponent.

Degree with natural indicator (n = 1, 2, 3,...)

Raising a number to the natural power n means multiplying the number by itself times:

Degree with an integer exponent (0, ±1, ±2,...)

If the exponent is positive integer number:

Construction to the zero degree:

The expression is indefinite, because, on the one hand, to any degree is this, and on the other hand, any number to the th degree is this.

If the exponent is negative integer number:

(because you can’t divide by).

Once again about zeros: the expression is not defined in the case. If, then.

Examples:

Power with rational exponent

  • - natural number;
  • - integer;

Examples:

Properties of degrees

To make it easier to solve problems, let’s try to understand: where did these properties come from? Let's prove them.

Let's see: what is and?

A-priory:

So, on the right side of this expression we get the following product:

But by definition it is a power of a number with an exponent, that is:

Q.E.D.

Example : Simplify the expression.

Solution : .

Example : Simplify the expression.

Solution : It is important to note that in our rule Necessarily there must be the same reasons. Therefore, we combine the powers with the base, but it remains a separate factor:

Another important note: this rule - only for product of powers!

Under no circumstances can you write that.

Just as with the previous property, let us turn to the definition of degree:

Let's regroup this work like this:

It turns out that the expression is multiplied by itself times, that is, according to the definition, this is the th power of the number:

In essence, this can be called “taking the indicator out of brackets.” But you can never do this in total: !

Let's remember the abbreviated multiplication formulas: how many times did we want to write? But this is not true, after all.

Power with a negative base.

Up to this point we have only discussed what it should be like index degrees. But what should be the basis? In powers of natural indicator the basis may be any number .

Indeed, we can multiply any numbers by each other, be they positive, negative, or even. Let's think about which signs ("" or "") will have degrees of positive and negative numbers?

For example, is the number positive or negative? A? ?

With the first one, everything is clear: no matter how many positive numbers we multiply by each other, the result will be positive.

But the negative ones are a little more interesting. We remember the simple rule from 6th grade: “minus for minus gives a plus.” That is, or. But if we multiply by (), we get - .

And so on ad infinitum: with each subsequent multiplication the sign will change. The following simple rules can be formulated:

  1. even degree, - number positive.
  2. Negative number raised to odd degree, - number negative.
  3. A positive number to any degree is a positive number.
  4. Zero to any power is equal to zero.

Determine for yourself what sign the following expressions will have:

1. 2. 3.
4. 5. 6.

Did you manage? Here are the answers:

1) ; 2) ; 3) ; 4) ; 5) ; 6) .

In the first four examples, I hope everything is clear? We simply look at the base and exponent and apply the appropriate rule.

In example 5) everything is also not as scary as it seems: after all, it doesn’t matter what the base is equal to - the degree is even, which means the result will always be positive. Well, except when the base is zero. The base is not equal, is it? Obviously not, since (because).

Example 6) is no longer so simple. Here you need to find out which is less: or? If we remember that, it becomes clear that, which means the base is less than zero. That is, we apply rule 2: the result will be negative.

And again we use the definition of degree:

Everything is as usual - we write down the definition of degrees and divide them by each other, divide them into pairs and get:

Before we look at the last rule, let's solve a few examples.

Calculate the expressions:

Solutions :

If we ignore the eighth power, what do we see here? Let's remember the 7th grade program. So, do you remember? This is the formula for abbreviated multiplication, namely the difference of squares!

We get:

Let's look carefully at the denominator. It looks a lot like one of the numerator factors, but what's wrong? The order of the terms is wrong. If they were reversed, rule 3 could apply. But how? It turns out that it’s very easy: the even degree of the denominator helps us here.

If you multiply it by, nothing changes, right? But now it turns out like this:

Magically the terms changed places. This “phenomenon” applies to any expression to an even degree: we can easily change the signs in parentheses. But it's important to remember: All signs change at the same time! You can’t replace it with by changing only one disadvantage we don’t like!

Let's go back to the example:

And again the formula:

So now the last rule:

How will we prove it? Of course, as usual: let’s expand on the concept of degree and simplify it:

Well, now let's open the brackets. How many letters are there in total? times by multipliers - what does this remind you of? This is nothing more than a definition of an operation multiplication: There were only multipliers there. That is, this, by definition, is a power of a number with an exponent:

Example:

Degree with irrational exponent

In addition to information about degrees for the average level, we will analyze the degree with an irrational exponent. All the rules and properties of degrees here are exactly the same as for a degree with a rational exponent, with the exception - after all, by definition, irrational numbers are numbers that cannot be represented as a fraction, where and are integers (that is, irrational numbers are all real numbers except rational numbers).

When studying degrees with natural, integer and rational exponents, each time we created a certain “image”, “analogy”, or description in more familiar terms. For example, a degree with a natural exponent is a number multiplied by itself several times; a number to the zero power is, as it were, a number multiplied by itself once, that is, they have not yet begun to multiply it, which means that the number itself has not even appeared yet - therefore the result is only a certain “blank number”, namely a number; a degree with an integer negative exponent - it’s as if some “reverse process” had occurred, that is, the number was not multiplied by itself, but divided.

It is extremely difficult to imagine a degree with an irrational exponent (just as it is difficult to imagine a 4-dimensional space). It is rather a purely mathematical object that mathematicians created to extend the concept of degree to the entire space of numbers.

By the way, in science a degree with a complex exponent is often used, that is, the exponent is not even a real number. But at school we don’t think about such difficulties; you will have the opportunity to comprehend these new concepts at the institute.

So what do we do if we see an irrational exponent? We are trying our best to get rid of it! :)

For example:

Decide for yourself:

1) 2) 3)

Answers:

  1. Let's remember the difference of squares formula. Answer: .
  2. We reduce the fractions to the same form: either both decimals or both ordinary ones. We get, for example: .
  3. Nothing special, we use the usual properties of degrees:

SUMMARY OF THE SECTION AND BASIC FORMULAS

Degree called an expression of the form: , where:

Degree with an integer exponent

a degree whose exponent is a natural number (i.e., integer and positive).

Power with rational exponent

degree, the exponent of which is negative and fractional numbers.

Degree with irrational exponent

a degree whose exponent is an infinite decimal fraction or root.

Properties of degrees

Features of degrees.

  • Negative number raised to even degree, - number positive.
  • Negative number raised to odd degree, - number negative.
  • A positive number to any degree is a positive number.
  • Zero is equal to any power.
  • Any number to the zero power is equal.

NOW YOU HAVE THE WORD...

How do you like the article? Write below in the comments whether you liked it or not.

Tell us about your experience using degree properties.

Perhaps you have questions. Or suggestions.

Write in the comments.

And good luck on your exams!

Division of powers with the same base. The basic property of a degree, based on the properties of multiplication, can be generalized to the product of three or more powers with the same bases and natural exponents.

3.a-3 is a0 = 1, the second numerator. In more complex examples, there may be cases where multiplication and division must be performed over powers with different bases and different exponents. Now let's look at them using specific examples and try to prove them.

Thus, we proved that when dividing two powers with the same bases, their exponents must be subtracted. After the degree of a number has been determined, it is logical to talk about the properties of the degree.

Here we will provide proofs of all properties of degrees, and also show how these properties are used when solving examples. For example, the basic property of the fraction am·an=am+n is often used in the form am+n=am·an when simplifying expressions. Let us give an example confirming the main property of the degree. Before presenting the proof of this property, let us discuss the meaning of the additional conditions in the formulation.

Properties of degrees with natural exponents

The condition m>n is introduced so that we do not go beyond the natural exponents. From the resulting equality am−n·an=am and from the connection between multiplication and division it follows that am−n is the quotient of the powers am and an. This proves the property of quotient powers with identical bases. For clarity, we will show this property with an example. For example, for any natural numbers p, q, r and s the equality is true. For greater clarity, let's give an example with specific numbers: (((5,2)3)2)5=(5,2)3+2+5=(5,2)10.

Adding and subtracting monomials

This fact and the properties of multiplication suggest that the result of multiplying any number of positive numbers will also be a positive number. It is quite obvious that for any positive integer n with a=0 the degree of an is zero. Indeed, 0n=0·0·…·0=0. For example, 03=0 and 0762=0. Let's move on to negative bases of degree. Let's start with the case when the exponent is an even number, let's denote it as 2·m, where m is a natural number.

Let us proceed to the proof of this property. Let us prove that for m>n and 0 It remains to prove the second part of the property. Therefore, am−an>0 and am>an, which is what needed to be proved. Proving each of these properties is not difficult; to do this, it is enough to use the definitions of degrees with natural and integer exponents, as well as the properties of operations with real numbers.

If p=0, then we have (a0)q=1q=1 and a0·q=a0=1, whence (a0)q=a0·q. Using the same principle, you can prove all other properties of a degree with an integer exponent, written in the form of equalities. The conditions p 0 in this case will be equivalent to the conditions m 0, respectively.

In this case, the condition p>q will correspond to the condition m1>m2, which follows from the rule for comparing ordinary fractions with the same denominators. These inequalities in the properties of the roots can be rewritten accordingly as and. And the definition of a degree with a rational exponent allows us to move on to inequalities and, accordingly.

Basic properties of logarithms

Calculating the value of a power is called the action of exponentiation. That is, when calculating the value of an expression that does not contain parentheses, first perform the action of the third stage, then the second (multiplication and division) and, finally, the first (addition and subtraction). Operations with roots.

Expanding the concept of degree. So far we have considered powers only with natural exponents; but operations with powers and roots can also lead to negative, zero and fractional exponents. All these exponents require additional definition. If we want the formula a m: a n=a m - n to be valid for m = n, we need a definition of degree zero.

Multiplying powers of numbers with the same exponents. Next, we will formulate a theorem on the division of powers with identical bases, solve explanatory problems and prove the theorem in the general case. Let us now move on to the definition of negative powers. You can easily verify this by substituting the formula from the definition into the remaining properties. To solve this problem, remember that: 49 = 7^2, and 147 = 7^2 * 3^1. If you now carefully use the properties of powers (when raising a power to a power, the exponents...

That is, exponents are actually subtracted, but since the exponent has a negative exponent in the denominator, when subtracting minus by minus it gives a plus, and the exponents add up. Let's remember what is called a monomial, and what operations can be done with monomials. Recall that to reduce a monomial to a standard form, you must first obtain a numerical coefficient by multiplying all numerical factors, and then multiply the corresponding powers.

Transition to a new foundation

That is, we must learn to distinguish between similar and non-similar monomials. Let us conclude: similar monomials have the same letter part, and such monomials can be added and subtracted.

Thank you for your feedback. If you liked our project and are ready to help or take part in it, forward information about the project to your friends and colleagues. In the previous video it was said that in examples with monomials there can only be multiplication: “Let's find the difference between these expressions and the previous ones.

The very concept of a monomial as a mathematical unit implies only the multiplication of numbers and variables; if there are other operations, the expression will no longer be a monomial. But at the same time, monomials can be added, subtracted, divided among themselves... Logarithms, like any numbers, can be added, subtracted and transformed in every possible way. But since logarithms are not exactly ordinary numbers, they have their own rules, which are called basic properties.

Please note: the key point here is the same grounds. If the reasons are different, these rules do not work! Speaking about the rules for adding and subtracting logarithms, I specifically emphasized that they only work with the same bases. From the second formula it follows that the base and argument of the logarithm can be swapped, but in this case the entire expression is “turned over”, i.e. the logarithm appears in the denominator.

That is, the property of natural degree n of a product of k factors is written as (a1·a2·…·ak)n=a1n·a2n·…·akn. There are no rules regarding addition and subtraction of powers with the same bases. The base and argument of the first logarithm are exact powers. 4. Reduce the exponents of 2a4/5a3 and 2/a4 and bring them to a common denominator.

A degree with a negative exponent. Division of powers with the same base. 4. Reduce the exponents 2a4/5a3 and 2/a4 and bring them to a common denominator. The base and argument of the first logarithm are exact powers. This property extends to the power of the product of three or more factors. Therefore, am−an>0 and am>an, which is what needed to be proved. It remains to prove the last of the listed properties of powers with natural exponents.

Please note that property No. 4, like other properties of degrees, is also applied in reverse order. That is, to multiply powers with the same exponents, you can multiply the bases, but leave the exponent unchanged. Calculating the value of a power is called the action of exponentiation. That is, when calculating the value of an expression that does not contain parentheses, first perform the action of the third stage, then the second (multiplication and division) and, finally, the first (addition and subtraction).

After the degree of a number has been determined, it is logical to talk about the properties of the degree. In this article we will give the basic properties of the power of a number, while touching on all possible exponents. Here we will provide proofs of all properties of degrees, and also show how these properties are used when solving examples. Let us immediately note that all written equalities are identical if the specified conditions are met, and their right and left sides can be swapped.

Let us give an example confirming the main property of the degree. Before presenting the proof of this property, let us discuss the meaning of the additional conditions in the formulation. The condition m>n is introduced so that we do not go beyond the natural exponents. The main property of a fraction allows us to write the equality am−n·an=a(m−n)+n=am.

Transition to a new foundation

That is, the property of natural degree n of a product of k factors is written as (a1·a2·…·ak)n=a1n·a2n·…·akn. For clarity, we will show this property with an example. The proof can be carried out using the previous property. For example, for any natural numbers p, q, r and s the equality is true. For greater clarity, let's give an example with specific numbers: (((5,2)3)2)5=(5,2)3+2+5=(5,2)10.

This fact and the properties of multiplication suggest that the result of multiplying any number of positive numbers will also be a positive number. It is quite obvious that for any positive integer n with a=0 the degree of an is zero. Indeed, 0n=0·0·…·0=0. For example, 03=0 and 0762=0. Let's move on to negative bases of degree. Let's start with the case when the exponent is an even number, let's denote it as 2·m, where m is a natural number.

Let us proceed to the proof of this property. Let us prove that for m>n and 0. Using the same principle, we can prove all other properties of a degree with an integer exponent, written in the form of equalities. The conditions p 0 in this case will be equivalent to the conditions m 0, respectively. In this case, the condition p>q will correspond to the condition m1>m2, which follows from the rule for comparing ordinary fractions with the same denominators.

Operations with roots. Expanding the concept of degree. So far we have considered powers only with natural exponents; but operations with powers and roots can also lead to negative, zero and fractional exponents. All these exponents require additional definition. If we want the formula a m: a n=a m - n to be valid for m = n, we need a definition of degree zero. Logarithms, like any numbers, can be added, subtracted and transformed in every way.

Extracting the exponent from the logarithm

If the reasons are different, these rules do not work! Speaking about the rules for adding and subtracting logarithms, I specifically emphasized that they only work with the same bases. From the second formula it follows that the base and argument of the logarithm can be swapped, but in this case the entire expression is “turned over”, i.e. the logarithm appears in the denominator.

It is possible to evaluate how convenient they are only when solving logarithmic equations and inequalities. Since the product does not change when rearranging factors, we calmly multiplied four and two, and then dealt with logarithms. Often in the solution process it is necessary to represent a number as a logarithm to a given base.

Properties of degrees, formulations, proofs, examples.

The number n can be absolutely anything, because it is just a logarithm value. That’s what it’s called: the basic logarithmic identity. Like formulas for moving to a new base, the basic logarithmic identity is sometimes the only possible solution. In conclusion, I will give two identities that can hardly be called properties - rather, they are consequences of the definition of the logarithm.

Examples of solving examples with fractions containing numbers with powers

Remember once and for all: the logarithm to any base a of that base itself is equal to one. 1 = 0 is logarithmic zero. The base a can be anything, but if the argument contains one, the logarithm is equal to zero! Because a0 = 1 is a direct consequence of the definition. That's all the properties. Download the cheat sheet at the beginning of the lesson, print it out, and solve the problems.

Logarithmic unit and logarithmic zero

2.a-4 is a-2 the first numerator. In this case, we advise you to do the following. This is the third stage action. For example, the basic property of the fraction am·an=am+n is often used in the form am+n=am·an when simplifying expressions. The condition a≠0 is necessary in order to avoid division by zero, since 0n=0, and when we were introduced to division, we agreed that we cannot divide by zero. From the resulting equality am−n·an=am and from the connection between multiplication and division it follows that am−n is the quotient of the powers am and an. This proves the property of quotient powers with identical bases.

Similarly, if q=0, then (ap)0=1 and ap·0=a0=1, whence (ap)0=ap·0. In more complex examples, there may be cases where multiplication and division must be performed over powers with different bases and different exponents. These inequalities in the properties of the roots can be rewritten accordingly as and. And the definition of a degree with a rational exponent allows us to move on to inequalities and, accordingly.

It is obvious that numbers with powers can be added like other quantities , by adding them one after another with their signs.

So, the sum of a 3 and b 2 is a 3 + b 2.
The sum of a 3 - b n and h 5 -d 4 is a 3 - b n + h 5 - d 4.

Odds equal powers of identical variables can be added or subtracted.

So, the sum of 2a 2 and 3a 2 is equal to 5a 2.

It is also obvious that if you take two squares a, or three squares a, or five squares a.

But degrees various variables And various degrees identical variables, must be composed by adding them with their signs.

So, the sum of a 2 and a 3 is the sum of a 2 + a 3.

It is obvious that the square of a, and the cube of a, is not equal to twice the square of a, but to twice the cube of a.

The sum of a 3 b n and 3a 5 b 6 is a 3 b n + 3a 5 b 6.

Subtraction powers are carried out in the same way as addition, except that the signs of the subtrahends must be changed accordingly.

Or:
2a 4 - (-6a 4) = 8a 4
3h 2 b 6 - 4h 2 b 6 = -h 2 b 6
5(a - h) 6 - 2(a - h) 6 = 3(a - h) 6

Multiplying powers

Numbers with powers can be multiplied, like other quantities, by writing them one after the other, with or without a multiplication sign between them.

Thus, the result of multiplying a 3 by b 2 is a 3 b 2 or aaabb.

Or:
x -3 ⋅ a m = a m x -3
3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y

The result in the last example can be ordered by adding identical variables.
The expression will take the form: a 5 b 5 y 3.

By comparing several numbers (variables) with powers, we can see that if any two of them are multiplied, then the result is a number (variable) with a power equal to amount degrees of terms.

So, a 2 .a 3 = aa.aaa = aaaaa = a 5 .

Here 5 is the power of the result of the multiplication, equal to 2 + 3, the sum of the powers of the terms.

So, a n .a m = a m+n .

For a n , a is taken as a factor as many times as the power of n;

And a m is taken as a factor as many times as the degree m is equal to;

That's why, powers with the same bases can be multiplied by adding the exponents of the powers.

So, a 2 .a 6 = a 2+6 = a 8 . And x 3 .x 2 .x = x 3+2+1 = x 6 .

Or:
4a n ⋅ 2a n = 8a 2n
b 2 y 3 ⋅ b 4 y = b 6 y 4
(b + h - y) n ⋅ (b + h - y) = (b + h - y) n+1

Multiply (x 3 + x 2 y + xy 2 + y 3) ⋅ (x - y).
Answer: x 4 - y 4.
Multiply (x 3 + x - 5) ⋅ (2x 3 + x + 1).

This rule is also true for numbers whose exponents are negative.

1. So, a -2 .a -3 = a -5 . This can be written as (1/aa).(1/aaa) = 1/aaaaa.

2. y -n .y -m = y -n-m .

3. a -n .a m = a m-n .

If a + b are multiplied by a - b, the result will be a 2 - b 2: that is

The result of multiplying the sum or difference of two numbers is equal to the sum or difference of their squares.

If you multiply the sum and difference of two numbers raised to square, the result will be equal to the sum or difference of these numbers in fourth degrees.

So, (a - y).(a + y) = a 2 - y 2.
(a 2 - y 2)⋅(a 2 + y 2) = a 4 - y 4.
(a 4 - y 4)⋅(a 4 + y 4) = a 8 - y 8.

Division of degrees

Numbers with powers can be divided like other numbers, by subtracting from the dividend, or by placing them in fraction form.

Thus, a 3 b 2 divided by b 2 is equal to a 3.

Or:
$\frac(9a^3y^4)(-3a^3) = -3y^4$
$\frac(a^2b + 3a^2)(a^2) = \frac(a^2(b+3))(a^2) = b + 3$
$\frac(d\cdot (a - h + y)^3)((a - h + y)^3) = d$

Writing a 5 divided by a 3 looks like $\frac(a^5)(a^3)$. But this is equal to a 2 . In a series of numbers
a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 .
any number can be divided by another, and the exponent will be equal to difference indicators of divisible numbers.

When dividing degrees with the same base, their exponents are subtracted..

So, y 3:y 2 = y 3-2 = y 1. That is, $\frac(yyy)(yy) = y$.

And a n+1:a = a n+1-1 = a n . That is, $\frac(aa^n)(a) = a^n$.

Or:
y 2m: y m = y m
8a n+m: 4a m = 2a n
12(b + y) n: 3(b + y) 3 = 4(b +y) n-3

The rule is also true for numbers with negative values ​​of degrees.
The result of dividing a -5 by a -3 is a -2.
Also, $\frac(1)(aaaaa) : \frac(1)(aaa) = \frac(1)(aaaaa).\frac(aaa)(1) = \frac(aaa)(aaaaa) = \frac (1)(aa)$.

h 2:h -1 = h 2+1 = h 3 or $h^2:\frac(1)(h) = h^2.\frac(h)(1) = h^3$

It is necessary to master multiplication and division of powers very well, since such operations are very widely used in algebra.

Examples of solving examples with fractions containing numbers with powers

1. Reduce the exponents by $\frac(5a^4)(3a^2)$ Answer: $\frac(5a^2)(3)$.

2. Decrease the exponents by $\frac(6x^6)(3x^5)$. Answer: $\frac(2x)(1)$ or 2x.

3. Reduce the exponents a 2 /a 3 and a -3 /a -4 and bring to a common denominator.
a 2 .a -4 is a -2 the first numerator.
a 3 .a -3 is a 0 = 1, the second numerator.
a 3 .a -4 is a -1 , the common numerator.
After simplification: a -2 /a -1 and 1/a -1 .

4. Reduce the exponents 2a 4 /5a 3 and 2 /a 4 and bring to a common denominator.
Answer: 2a 3 /5a 7 and 5a 5 /5a 7 or 2a 3 /5a 2 and 5/5a 2.

5. Multiply (a 3 + b)/b 4 by (a - b)/3.

6. Multiply (a 5 + 1)/x 2 by (b 2 - 1)/(x + a).

7. Multiply b 4 /a -2 by h -3 /x and a n /y -3 .

8. Divide a 4 /y 3 by a 3 /y 2 . Answer: a/y.

9. Divide (h 3 - 1)/d 4 by (d n + 1)/h.