Заболевания, эндокринологи. МРТ
Поиск по сайту

Что такое радиация и чем она опасна. Разрушительное действие радиации на организм человека

Воздействие радиации на человека зависит от количества энергии ионизирующего излучения, которая поглощается тканями человека. Количество энергии, которая поглощается единицей массы ткани, называется поглощенной дозой . Единицей измерения поглощенной дозы является грей (1 Гр= 1 Дж/кг). Часто поглощенную дозу измеряют в радах (1 Гр = 100 рад).

Однако не только поглощенная доза определяет воздействие радиации на человека. Биологические последствия зависят от вида радиоактивного излучения. Например, альфа-излучение в 20 раз более опасно, чем гамма- или бета-излучение.

Биологическая опасность излучения определяется коэффициентом качества К. При умножении поглощенной дозы на коэффициент качества излучения получается доза, определяющая опасность излучения для человека, которая получила название эквивалентной.

Эквивалентная доза имеет специальную единицу измерения — зиверт (Зв). Часто для измерения эквивалентной дозы используется более мелкая единица — бэр (биологический эквивалент рада), 1 Зв = 100 бэр. Итак, основными параметрами радиации являются следующие (табл. 1).

Таблица. 1. Основные параметры радиации

Экспозиционная и эквивалентная дозы радиации

Для количественной оценки ионизирующего действия рентгеновского и гамма-излучения в сухом атмосферном воздухе используется понятие «экспозиционная доза» — отношение полного заряда ионов одного знака, возникающих в малом объеме воздуха, к массе воздуха в этом объеме. За единицу этой дозы принимают кулон на килограмм (Кл/кг). Применяется также внесистемная единица — рентген (Р).

Количество энергии излучения, поглощенное единицей массы облучаемого тела (тканями организма), называется поглощенной дозой и измеряется в системе СИ в Грэях (Гр). Грэй - доза излучения, при которой облученному веществу массой 1 кг передается энергия ионизирующего излучения 1 Дж.

Эта доза не учитывает, какой вид излучения воздействовал на организм человека. Если принять во внимание этот факт, то дозу следует умножить на коэффициент, отражающий способность излучения данного вида повреждать ткани организма. Пересчитанную таким образом дозу называют эквивалентной дозой: ее измеряют в системе СИ в единицах, называемых зивертами (Зв).

Доза эффективная — величина, используемая как мера риска возникновения отдаленных последствий облучения всего тела человека и отдельных его органов с учетом их радиочувствительности. Она представляет собой сумму произведений эквивалентной дозы в органе на соответствующий взвешивающий коэффициент для данного органа или ткани. Эта доза также измеряется в зивертах.

Специальная единица эквивалентной дозы - бэр - поглощенная доза любого вида излучения, которая вызывает равный биологический эффект с дозой в 1 рад рентгеновского излучения. Рад - специальная единица поглощенной дозы зависит от свойств излучения и поглощающей среды.

Поглощенная, эквивалентная, эффективная и экспозиционная дозы, отнесенные к единице времени, называются мощностью соответствующих доз.

Условная связь системных единиц:

100 Рад = 100 Бэр = 100 Р = 13 В = 1 Гр.

Биологическое действие излучения зависит от числа образованных пар ионов или от связанной с ним величины — поглощенной энергии.

Ионизация живой ткани приводит к разрыву молекулярных связей и изменению химической структуры различных соединений. Изменение химического состава значительного числа молекул приводит к гибели клеток.

Под влиянием излучений в живой ткани происходит расщепление воды на атомарный водород Н и гидроксильную группу ОН , которые, обладая высокой активностью, вступают в соединение с другими молекулами ткани и образуют новые химические соединения, не свойственные здоровой ткани. В результате нормальное течение биохимических процессов и обмен веществ нарушается.

Под влиянием ионизирующих излучений в организме происходят торможение функций кроветворных органов, нарушение нормальной свертываемости крови и увеличение хрупкости кровеносных сосудов, расстройство деятельности желудочно-кишечного тракта, истощение организма, снижение сопротивляемости организма инфекционным заболеваниям, увеличение числа лейкоцитов (лейкоцитоз), раннее старение и др.

Воздействие ионизирующего излучения на организм человека

В организме человека радиация вызывает цепочку обратимых и необратимых изменений. Пусковым механизмом воздействия являются процессы ионизации и возбуждения молекул и атомов в тканях. Важную роль в формировании биологических эффектов играют свободные радикалы Н+ и ОН-, образующиеся в процессе радиолиза воды (в организме содержится до 70 % воды). Обладая высокой химической активностью, они вступают в химические реакции с молекулами белка, ферментов и других элементов биологической ткани, вовлекая в реакции сотни и тысячи молекул, не затронутых излучением, что приводит к нарушению биохимических процессов в организме. Под воздействием радиации нарушаются обменные процессы, замедляется и прекращается рост тканей, возникают новые химические соединения, нс свойственные организму (токсины). А это в свою очередь влияет на процессы жизнедеятельности отдельных органов и систем организма: нарушаются функции кроветворных органов (красного костного мозга), увеличивается проницаемость и хрупкость сосудов, происходит расстройство желудочно-кишечного тракта, снижается сопротивляемость организма (ослабевает иммунная система человека), происходит его истощение, перерождение нормальных клеток в злокачественные (раковые) и др.

Ионизирующее излучение вызывает поломку хромосом, после чего происходит соединение разорванных концов в новые сочетания. Это приводит к изменению генного аппарата человека. Стойкие изменения хромосом приводят к мутациям, которые отрицательно влияют на потомство.

Перечисленные эффекты развиваются в различные временные промежутки: от секунд до многих часов, дней, лет. Это зависит от полученной дозы и времени, в течение которого она была получена.

Острое лучевое поражение (острая лучевая болезнь) возникает тогда, когда человек в течение нескольких часов или даже минут получает значительную дозу. Принято различать несколько степеней острого лучевого поражения (табл. 2).

Таблица 2. Последствия острого лучевого поражения

Эти градации весьма приблизительны, поскольку зависят от индивидуальных особенностей каждого организма. Например, наблюдались случаи гибели людей и при дозах менее 600 бэр, зато в других случаях удавалось спасти людей и при дозах более 600 бэр.

Острая лучевая болезнь может возникнуть у работников или населения при авариях на объектах ЯТЦ, других объектах, использующих ионизирующие излучения, а также при атомных взрывах.

Хроническое облучение (хроническая лучевая болезнь) возникает при облучении человека небольшими дозами в течение длительного времени. При хроническом облучении малыми дозами, в том числе и от радионуклидов, попавших внутрь организма, суммарные дозы могут быть весьма большими. Наносимое организму повреждение, по крайней мере частично, восстанавливается. Поэтому доза в 50 бэр, приводящая при однократном облучении к болезненным ощущениям, при хроническом облучении, растянутом во времени на 10 и более лет, к видимым явлениям не приводит.

Степень воздействия радиации зависит от того, является ли облучение внешним или внутренним (облучение при попадании радионуклида внутрь организма). Внутреннее облучение возможно при вдыхании загрязненного радионуклидами воздуха, при заглатывании зараженной питьевой воды и пищи, при проникновении через кожу. Некоторые радионуклиды интенсивно поглощаются и накапливаются в организме. Например, радиоизотопы кальция, радия, стронция накапливаются в костях, радиоизотопы йода — в щитовидной железе, радиоизотопы редкоземельных элементов повреждают печень, радиоизотопы цезия, рубидия угнетают кроветворную систему, повреждают семенники, вызывают опухоли мягких тканей. При внутреннем облучении наиболее опасны альфа-излучающие радиоизотопы, т. к. альфа-частица обладает из-за своей большой массы очень высокой ионизирующей способностью, хотя ее проникающая способность не велика. К таким радиоизотопам относятся изотопы плутония, полония, радия, радона.

Нормирование ионизирующего излучения

Гигиеническое нормирование ионизирующего излучения осуществляется по СП 2.6.1-758-99. Нормы радиационной безопасности (НРБ-99). Устанавливаются дозовые пределы эквивалентной дозы для следующих категорий лиц:

  • персонал — лица, работающие с источниками радиации (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);
  • все население, включая лиц из персонала, вне сферы и условий в их производственной деятельности.

В табл. 3. приведены основные дозовые пределы облучения. Основные дозовые пределы облучения персонала и населения, указанные в таблице, не включают в себя дозы от природных и медицинских источников ионизирующего излучения, атакже дозы, полученные в результате радиационных аварий. На эти виды облучения в НРБ-99 устанавливаются специальные ограничения.

Таблица 3. Основные дозовые пределы облучения (извлечение из НРБ-99)

* Дозы облучения, как и все остальные допустимые производные уровни персонала группы Б, не должны превышать 1/4 значений для персонала группы А. Далее все нормативные значения для категории персонала приводятся только для группы А.

** Относится к среднему значению в покровном слое толщиной 5 мг/см 2 . На ладонях толщина покровного слоя — 40 мг/см 2 .

Помимо дозовых пределов облучения в НРБ-99 устанавливаются допустимые уровни мощности дозы при внешнем облучении, пределы годового поступления радионуклидов, допустимые уровни загрязнения рабочих поверхностей и т. д., которые являются производными от основных дозовых пределов. Числовые значения допустимого уровня загрязнения рабочих поверхностей приведены в табл. 4.

Таблица 4. Допустимые уровни общего радиоактивного загрязнения рабочих поверхностей, частиц/(см 2 . мин) (извлечение из НРБ-99)

Объект загрязнения

a-активные нуклиды

β-активные нуклиды

отдельные

Неповрежденная кожа, полотенца, слецбелье, внутренняя поверхность лицевых частей средств индивидуальной защиты

Основная спецодежда, внутренняя поверхность дополнительных средств индивидуальной защиты, наружная поверхность спецобуви

Наружная поверхность дополнительных средств индивидуальной защиты, снимаемой в сан шлюзах

Поверхности помещений постоянного пребывания персонала и находящегося в них оборудования

Поверхности помещений периодического пребывания персонала и находящегося в них оборудования

Для ряда категорий персонала устанавливаются дополнительные ограничения. Например, для женщин в возрасте до 45 лет эквивалентная доза, приходящаяся на нижнюю часть живота, не должна превышать 1 мЗв в месяц.

При установлении беременности женщин из персонала работодатели обязаны переводить их на другую работу, нс связанную с излучением.

Для учащихся в возрасте до 21 года, проходящих обучение с источниками ионизирующего излучения, принимаются дозовые пределы, установленные для лиц из населения.

Реферат

Тема:


План:

Введение

1 Прямое и косвенное действие ионизирующего излучения

2 Воздействие ионизирующего излучения на отдельные органы и организм в целом

3 Мутации

4 Действие больших доз ионизирующих излучений на биологические объекты

5. Два вида облучения организма: внешнее и внутреннее

Заключение

Литература

БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ РАДИАЦИИ

Фактор радиации присутствовал на нашей планете с момента ее образования, и как показали дальнейшие исследования, ионизирующие излучения наряду с другими явлениями физической, химической и биологической природы сопровождали развитие жизни на Земле. Однако, физическое действие радиации начало изучаться только в конце XIX столетия, а ее биологические эффекты на живые организмы - в середине XX. Ионизационные излучения относятся к тем физическим феноменам, которые не ощущаются нашими органами чувств, сотни специалистов, работая с радиацией, получили радиационные ожоги от больших доз облучения и умерли от злокачественных опухолей, вызванных переоблучением.

Тем не менее, сегодня мировая наука знает 6 биологическом воздействии радиации больше, чем о действии любых других факторов физической и биологической природы в окружающей среде.

При изучении действия радиации на живой организм были определены следующие особенности:

· Действие ионизирующих излучений на организм не ощутимо человеком. У людей отсутствует орган чувств, который воспринимал бы ионизирующие излучения. Существует так называемый период мнимого благополучия - инкубационный период проявления действия ионизирующего излучения. Продолжительность его сокращается при облучении в больших дозах.

· Действие от малых доз может суммироваться или накапливаться.

· Излучение действует не только на данный живой организм, но и на его потомство - это так называемый генетический эффект.

· Различные органы живого организма имеют свою чувствительность к облучению. При ежедневном воздействии дозы 0,002-0,005 Гр уже наступают изменения в крови.

· Не каждый организм в целом одинаково воспринимает облучение.

· Облучение зависит от частоты. Одноразовое облучение в большой дозе вызывает более глубокие последствия, чем фракционированное.


1. ПРЯМОЕ И КОСВЕННОЕ ДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ

Радиоволны, световые волны, тепловая энергия солнца - все это разновидности излучений. Однако, излучение будет ионизирующим, если оно способно разрывать химические связи молекул, из которых состоят ткани живого организма, и, как следствие, вызывать биологические изменения. Действие ионизирующего излучения происходит на атомном или молекулярном уровне, независимо от того, подвергаемся ли мы внешнему облучению, или получаем радиоактивные вещества с пищей и водой, что нарушает баланс биологических процессов в организме и приводит к неблагоприятным последствиям. Биологические эффекты влияния" радиации на организм человека обусловлены взаимодействием энергии излучения с биологической тканью. Энергию непосредственно передаваемую атомам и молекулам биотканей называют прямым действием радиации. Некоторые клетки из-за неравномерности распределения энергии излучения будут значительно повреждены.

Одним из прямых эффектов является канцерогенез или развитие онкологических заболеваний. Раковая опухоль возникает, когда соматическая клетка выходит из под контроля организма и начинает активно делиться. Первопричиной этого являются нарушения в генетическом механизме, называемые мутациями. При делении раковая клетка производит только раковые клетки. Одним из наиболее чувствительных органов к воздействию радиации является щитовидная железа. Поэтому биоткань этого органа наиболее уязвима в плане развития рака. Не менее восприимчива к влиянию излучения кровь. Лейкоз или рак крови - один из распространенных эффектов прямого воздействия радиации. Заряженные частицы проникают в ткани организма, теряют свою энергию вследствие электрических взаимодействий с электронами атомов Электрическое взаимодействие сопровождает процесс ионизации (вырывание электрона из нейтрального атома)

Физико-химические изменения сопровождают возникновение в организме чрезвычайно опасных "свободных радикалов".

Кроме прямого ионизирующего облучения выделяют также косвенное или непрямое действие, связанное с радиолизом воды. При радиолизе возникают свободные радикалы - определенные атомы или группы атомов, обладающие высокой химической активностью. Основным признаком свободных радикалов являются избыточные или неспаренные электроны. Такие электроны легко смещаются со своих орбит и могут активно участвовать в химической реакции. Важно то, что весьма незначительные внешние изменения могут привести к значительным изменениям биохимических свойств клеток. К примеру, если обычная молекула кислорода захватит свободный электрон, то она превращается в высокоактивный свободный радикал - супероксид. Кроме того, имеются и такие активные соединения, как перекись водорода, гидрооксил и атомарный кислород. Большая часть свободных радикалов нейтральна, но некоторые из них могут иметь положительный или отрицательный заряд.

Если число свободных радикалов мало, то организм имеет возможность их контролировать. Если же их становится слишком много, то нарушается работа защитных систем, жизнедеятельность отдельных функций организма. Повреждения, вызванные свободными радикалами, быстро увеличиваются по принципу цепной реакции. Попадая в клетки, они нарушают баланс кальция и кодирование генетической информации. Такие явления могут привести к сбоям в синтезе белков, что является жизненно важной функцией всего организма, т.к. неполноценные белки нарушают работу иммунной системы. Основные фильтры иммунной системы - лимфатические узлы работают в перенапряженном режиме и не успевают их отделять. Таким образом, ослабляются защитные барьеры и в организме создаются благоприятные условия для размножения вирусов микробов и раковых клеток.

Свободные радикалы, вызывающие химические реакции, вовлекают в этот процесс многие молекулы, не затронутые излучением. Поэтому производимый излучением эффект обусловлен не только количеством поглощенной энергии, а и той формой, в которой эта энергия передается. Никакой другой вид энергии, поглощенный биообъектом в том же количестве, не приводит к таким изменениям, какие вызывает ионизирующее излучение. Однако природа этого явления такова, что все процессы, в том числе и биологические, уравновешиваются. Химические изменения возникают в результате взаимодействия свободных радикалов друг с другом или со "здоровыми" молекулами Биохимические изменения происходят как в момент облучения, так и на протяжении многих лет, что приводит к гибели клеток.

Наш организм в противовес описанным выше процессам вырабатывает особые вещества, которые являются своего рода "чистильщиками".

Эти вещества (ферменты) в организме способны захватывать свободные электроны, не превращаясь при этом в свободные радикалы. В нормальном состоянии в организме поддерживается баланс между появлением свободных радикалов и ферментами. Ионизирующее излучение нарушает это равновесие, стимулирует процессы роста свободных радикалов и приводит к негативным последствиям. Активизировать процессы поглощения свободных радикалов можно, включив в рацион питания антиокислители, витамины А, Е, С или препараты, содержащие селен. Эти вещества обезвреживают свободные радикалы, поглощая их в больших количествах.

2. ВОЗДЕЙСТВИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ НА ОТДЕЛЬНЫЕ ОРГАНЫ И ОРГАНИЗМ В ЦЕЛОМ

В структуре организма можно выделить два класса систем: управляющую (нервная, эндокринная, иммунная) и жизнеобеспечивающую (дыхательная, сердечно-сосудистая, пищеварительная). Все основные обменные (метаболические) процессы и каталитические (ферментативные) реакции происходят на клеточном и молекулярном уровнях. Уровни организации организма функционируют в тесном взаимодействии и взаимовлиянии со стороны управляющих систем. Большинство естественных факторов воздействуют сначала на вышестоящие уровни, затем через определенные органы и ткани - на клеточно-молекулярные уровни. После этого начинается ответная фаза, сопровождающаяся коррективами на всех уровнях.

Взаимодействие радиации с организмом начинается с молекулярного уровня. Прямое воздействие ионизирующего излучения, поэтому является более специфичным. Повышение уровня окислителей характерно и для других воздействий. Известно, что различные симптомы (температура, головная боль и др.) встречаются при многих болезнях и причины их различны. Это затрудняет установление диагноза. Поэтому, если в результате вредного воздействия на организм радиации не возникает определенной болезни, установить причину более отдаленных последствий трудно, поскольку они теряют свою специфичность.

Радиочувствительность различных тканей организма зависит от биосинтетических процессов и связанной с ними ферментативной активностью. Поэтому наиболее высокой радиопора-жаемостью отличаются клетки костного мозга, лимфатических узлов, половые клетки. Кровеносная система и красный костный мозг наиболее уязвимы при облучении и теряют способность нормально функционировать уже при дозах 0,5-1 Гр. Однако, они обладают способностью восстанавливаться и если не все клетки поражены, кровеносная система может восстановить свои функции. Репродуктивные органы, например, семенники, так же отличаются повышенной радиочувствительностью. Облучение свыше 2 Гр приводит к постоянной стерильности. Только через много лет они могут полноценно функционировать. Яичники менее чувствительны, по крайней мере, у взрослых женщин. Но однократная доза более 3 Гр все же приводит к их стерильности, хотя большие дозы при неоднократном облучении не сказываются на способности к деторождению.

« Биологическое действие радиации на человека»

Прошло более двадцати столетий, и перед человечеством вновь встала подобная дилемма: атом и радиация, которую он испускает, могут стать для нас источником благоденствия или гибели, угрозой или надеждой, лучшей или худшей вещью.

Цели работы:

1) Выявить воздействия радиации на биологическую среду.

2) Выявить воздействия радиации на человека.

3) Определить меры защиты от радиационного фона.

Задачи:

1) Изучить литературные источники.

2) С помощью полученной информации определить плюсы и минусы радиации.

3) Посетить КГТУ для изучения прибора, определяющего радиационный фон.

4) Определить, как радиационный фон влияет на окружающую среду и человека.

5) Выяснить меры защиты от радиационного облучения.

В нашем мире существует множество мест и предметов, от которых мы получаем облучение. Например, от телефона. Наш мобильный излучает электромагнитные волны, которые подвергают наш организм облучению. Так же мы облучаемся при воздействии с не заземленным компьютером. Когда мы делаем флюрографию, мы тоже подвергаемся к малому излучению. Есть еще множество вещей и факторов, благодаря которым мы подвергаемся излучению.

Источники радиации:

Естественные: Космические, солнечные лучи; газ радон, радиоактивные изотопы в горных породах (уран 238,торий 232,калий 40, рубидий 87); внутреннее облучение человека за счёт радионуклидов (с водой и пищей). Созданные человеком: Медицинские процедуры и методы лечения, атомная энергетика , ядерные взрывы, мусорные свалки, строительные материалы, сжигаемое топливо, бытовая техника .

Использование радиации:

Радиация используется в медицине в диагностических целях и для лечения. Одним из самых распространенных медицинских приборов является рентгеновский аппарат. Исследования в области - радиационной генетики и радиационной селекции дали около сотни новых разновидностей высокоурожайных культурных растений, устойчивых к различным заболеваниям.

Последствия воздействия радиации :

Лучевая болезнь, бесплодие , генетические мутации, поражения органов зрения, поражения нервной системы, ускоренное старение организма, нарушение психического и умственного развития, раковые заболевания.

Меры безопасности:

·не выходим из помещений, 2-3 раза в день делаем влажную (именно влажную!) уборку;

·как можно чаще принимаем душ (особенно после выхода на улицу), стираем вещи. Регулярное промывание физраствором слизистых носа, глаз и глотки не столь важно, поскольку при дыхании поступает значительно большее количество радионуклидов;

·чтобы оградить организм от радиоактивного йода-131, достаточно смазать небольшой участок кожи медицинским йодом. По мнению врачей, эта нехитрый способ защиты действует месяц;

·если Вам приходится выходить на улицу, лучше надевать светлую одежду, желательно хлопчатобумажную и влажную. На голову рекомендуют надевать капюшон и бейсболку одновременно;

·в первые несколько дней нужно опасаться радиоактивных осадков, то есть «затаиться и отсидеться».

Наши исследования в калининградском центре атома.

Для нашего опыта мы взвесили людей разной весовой категории. И наш опыт показал, что чем больше вес человека, тем выше его нормальный радиационный фон.

Радиационный фон

Дози́метр - прибор для измерения эффективной дозы или мощности ионизирующего излучения за некоторый промежуток времени. Само измерение

называется дозиметрией. В нашем случае дозиметр представляет собой напольные весы с компьютером. В результате проведенных исследований мы выявили плюсы и минусы радиации:

Плюсы:

использование в медицине (рентгенодиагностика, лучевая терапия и т. п.);

радиационная генетика и селекция;

радиоактивный громоотвод;

стерилизация и сохранение пищевых продуктов;

восстановление фотографий;

использование ионизирующих излучений в промышленности.

Минусы:

облучение; радиоактивный мусор; опасность «мирной» радиации;

генетические последствия облучения.

Вывод: В результате проведенных исследований мы выяснили, что чем больше вес человека, тем выше его нормальный радиационный фон и что он не зависит от возраста человека.

>> Биологическое действие радиоактивных излучений

§ 113 БИОЛОГИЧЕСКОЕ ДЕЙСТВИЕ РАДИОАКТИВНЫХ ИЗЛУЧЕНИЙ

Излучения радиоактивных веществ оказывают очень сильное воздействие на все живые организмы. Даже сравнительно слабое излучение, которое при полном поглощении повышает температуру тела лишь на 0,001 °С, нарушает жизнедеятельность клеток.

Живая клетка - это сложный механизм не способный продолжать нормальную деятельность далее ири малых повреждениях отдельных его участков. Между тем и слабые излучения способны нанести клеткам существенные повреждения и вызвать опасные заболевания (лучевая болезнь).

Доза излучения. Воздействие излучений на живые организмы характеризуется дозой излучения. Поглощенной дозой излучения называется отношение поглощенной энергии Е ионизирующего излучения к массе m облучаемого вещества:

В СИ поглощенную дозу излучения выражают в грэях (сокращенно: Гр). 1 Гр равен поглощенной дозе излучения, при которой облученному веществу массой 1 кг передается энергия ионизирующего излучения 1 Дж:

Естественный фон радиации (космические лучи, радиоактивность окружающей среды и человеческого тела) составляет за год дозу излучения около 2 10 -3 Гр на человека. Международная комиссия по радиационной защите установила для лиц, работающих с излучением, предельно допустимую за год дозу 0,05 Гр. Доза излучения 3-10 Гр, полученная за короткое время, смертельна.

Рентген. На практике широко используется внесистемная единица экспозиционной дозы излучения - рентген (сокращенно: Р). Эта единица является мерой ионизирующей способности рентгеновского и гамма-излучений. Доза излучения равна одному рентгену (1 Р), если в 1 см 3 сухого воздуха при температуре О °С и давлении 760 мм рт. ст. образуется столько ионов, что их суммарный заряд каждого знака в отдельности равен 3 10 -10 Кл. При этом получается примерно 2 10 9 пар ионов. Число образующихся ионов связано с поглощаемой веществом энергией. В практической дозиметрии можно считать 1 Р примерно эквивалентным поглощенной дозе излучения 0,01 Гр.

Характер воздействия излучения зависит не только от дозы поглощенного излучения, но и от его вида. Различие биологического воздействия видов излучения характеризуется коэффициентом качества к. За единицу принимается коэффициент качества рентгеновского и гамма-излучения.
Самое болыпое значение коэффициента качества у -частиц (к = 20), -лучи являются самыми опасными, так как вызывают самые больнше разрушения живых клеток.

Для оценки действия излучения на живые организмы вводится специальная величина - эквивалентная доза поглощенного излучения. Это произведение дозы поглощенного излучения на коэффициент качества:

Единица эквивалентной дозы - зиверт (Зв). 1 Зв - эквивалентная доза, при которой доза поглощенного гамма-излучения равна 1 Гр.

Максимальное значение эквивалентной дозы, после которого происходит поражение организма, выражающееся в нарушении деления клетки или образовании новых клеток, 0,5 Зв.

Среднее значение эквивалентной дозы поглощенного излучения за счет естественного радиационного фона (космические лучи, радиоактивные изотопы земной коры и т. д.) составляет 2 м З в в год.

Защита организмов от излучения. При работе с любым источником радиации (радиоактивные изотопы, реакторы и др.) необходимо принимать меры по радиационной защите всех людей, могущих попасть в зону действия излучения.

Самый простой метод защиты - это удаление персонала от источника излучения на достаточно большое расстояние. Даже без учета поглощения в воздухе интенсивность радиации убывает обратно пропорционально квадрату расстояния от источника. Поэтому ампулы с радиоактивными препаратами не следует брать руками. Надо пользоваться специальными щипцами с длинной ручкой.

В тех случаях, когда удаление от источника излучения на достаточно большое расстояние невозможно, для защиты от излучения используют преграды из поглощающих материалов.

Наиболее сложна защита от -лучей и нейтронов из-за их большой проникающей способности. Лучшим поглотителем -лучей является свинец. Медленные нейтроны хорошо поглощаются бором и кадмием. Быстрые нейтроны предварительно замедляются с помощью графита.
После аварии на Чернобыльской АЭС Международным агентством по атомной энергии (МАГАТЭ) по предложению нашей страны приняты рекомендации по дополнительным мерам безопасности энергетических реакторов. Установлены более строгие регламенты работ персонала АЭС.

Авария на Чернобыльской АЭС показала огромную опасность радиоактивных излучений. Все люди должны иметь представление об этой опасности и мерах защиты от нее.

1. Что такое доза излучения!
2. Чему (в рентгенах) равен естественный фон радиации!
3. Чему (в рентгенах) равна предельно допустимая за год доза излучения для лиц, работающих с радиоактивными препаратами!

Мякишев Г. Я., Физика. 11 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / Г. Я. Мякишев, Б. В. Буховцев, В. М. Чаругин; под ред. В. И. Николаева, Н. А. Парфентьевой. - 17-е изд., перераб. и доп. - М. : Просвещение, 2008. - 399 с: ил.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Радиоактивность это испускание ядрами некоторых элементов различных частиц, сопровождающееся переходом ядра в другое состояние и изменением его параметров. Явление радиоактивности было открыто французским ученым Анри Беккерелем в 1896 году для солей урана.

В 1899 году под руководством английского ученого Эрнста Резерфорда, был проведен опыт, позволивший обнаружить сложный состав радиоактивного излучения.

ТРИ составляющие радиационного излучения Бета – частицы представляют собой поток быстрых электронов, летящих со скоростями близкими к скорости света. Они проникают в воздух до 20 м. Альфа частицы – это потоки ядер атомов гелия. Скорость этих частиц 20000 км/с, что превышает скорость современного самолета (1000 км/ч) в 72000 раз. Альфа – лучи проникают в воздух до 10 см. Гамма-излучение представляет собой электромагнитное излучение, испускаемое при ядерных превращениях или взаимодействии частиц

Каждый тип излучения обладает своей проникающей способностью, то есть свободностью пройти сквозь вещество. Чем большей плотностью обладает вещество, тем хуже оно пропускает излучение.

Альфа излучение — обладает низкой проникающей способностью; — задерживается листом бумаги, одеждой, кожей человека; — попавшие альфа частицы внутрь организма, представляют большую опасность.

-излучение По своим свойствам -частицы обладают малой проникающей способностью и не представляют опасности до тех пор, пока радиоактивные вещества, испускающие -частицы, не попадут внутрь организма через рану, с пищей или вдыхаемым воздухом; тогда они становятся чрезвычайно опасными.

Бета излучение — имеет гораздо большую проникающую способность; — может проходить в воздухе расстояние до 5 метров, способно проникать в ткани организма; — слой алюминия толщиной в несколько миллиметров способно задержать бета-частицы.

-излучение — частицы могут проникать в ткани организма на глубину один – два сантиметра.

Гамма излучение — обладает ещё большой проникающей способностью; — задерживается толстым слоем свинца или бетона.

-излучение Большой проникающей способностью обладает -излучение, которое распространяется со скоростью света; его может задержать лишь толстая свинцовая или бетонная плита.

Основные понятия, термины и определения Радиация — это явление, происходящее в радиоактивных элементах, ядерных реакторах, при ядерных взрывах, сопровождающееся испусканием частиц и различными излучениями, в результате чего возникают вредные и опасные факторы, воздействующие на людей. Проникающая радиация следует понимать как поражающий фактор ионизирующих излучений, возникающих, например, при взрыве атомного реактора. Ионизирующее излучение — это любое излучение, вызывающее ионизацию среды, т. е. протекание электрических токов в этой среде, в том числе и в организме человека, что часто приводит к разрушению клеток, изменению состава крови, ожогам и другим тяжелым последствиям.

Источники внешнего облучения 1. Космические лучи (0, 3 м. Зв/год), дают чуть меньше половины всего внешнего облучения получаемого населением. 2. Нахождение человека, чем выше поднимается он над уровнем моря, тем сильнее становится облучение. 3. Земная радиация, исходит в основном от тех пород полезных ископаемых, которые содержат калий – 40, рубидий – 87, уран – 238, торий – 232.

Внутреннее облучение населения Попадание в организм с пищей, водой, воздухом. Радиоактивный газ радон — он невидимый, не имеющий ни вкуса, ни запаха газ, который в 7, 5 раз тяжелее воздуха. Глиноземы. Отходы промышленности, используемые в строительстве, например, кирпич из красной глины, доменный шлак, зольная При сжигании угля значительная часть его компонентов спекается в шлак, где концентрируются радиоактивные вещества.

При работе с любым источником радиации необходимо принимать меры по радиационной защиты всех людей, могущих попасть в зону действия излучения. Человек с помощью органов чувств не способен обнаружить любые дозы радиоактивного излучения. Для обнаружения ионизирующих излучений, измерения их энергии и других свойств, применяются до зиметры. Измерение радиоактивного излучения

Эквивалентная доза 1 Зв. = 1 Дж/кг Зиверт представляет собой единицу поглощенной дозы, умноженную на коэффициент, учитывающий неодинаковую радиоактивную опасность для организма разных видов ионизирующего излучения.

Эквивалентная доза излучения: Н=Д*К К — коэффициент качества Д – поглощенная доза излучений Поглощенная доза излучений: Д=Е/ m Е – энергия поглощенного тела m – масса тела

Доза излучения поглощение Е ионизирующего излучения к массе вещества В СИ поглощённую дозу излучения выражают в грэях Естественный фон радиации (космические лучи, радиоактивность окружающей среды и человеческого тела) составляет за год дозу излучения около 2*10 -3 Гр Доза излучения 3 -10 Гр, полученная за короткое время, смертельна

Воздействие ионизирующих излучений Любой вид ионизирующих излучений вызывает биологические изменения в организме. Однократное облучение вызывает биологические нарушения, которые зависят от суммарной поглощенной дозы. Так при дозе до 0, 25 Гр. видимых нарушений нет, но уже при 4 – 5 Гр. смертельные случаи составляют 50% от общего числа пострадавших, а при 6 Гр. и более — 100% пострадавших. Основной механизм действия связан с процессами ионизации атомов и молекул живой материи, в частности молекул воды, содержащихся в клетках. Степень воздействия ионизирующих излучений на живой организм зависит от мощности дозы облучения, продолжительности этого воздействия и вида излучения и радионуклида, попавшего внутрь организма.

Механизм действия излучения: происходит ионизация атомов и молекул, что приводит к изменению химической активности клеток. Биологическое действие радиоактивных излучений

В силу того, что при радиоактивном облучении биологическая поражаемость органов тела человека или отдельных систем организма неодинакова, их делят на группы: I (наиболее уязвимая) - все тело, гонады и красный костный мозг (кроветворная система); II - хрусталик глаза, щитовидная железа (эндокринная система), печень, почки, легкие, мышцы, жировая ткань, селезенка, желудочно-кишечный тракт, а также другие органы, которые не вошли в I и III группы; III - кожный покров, костная ткань, кисти, предплечья, стопы и голени.

Чувствительность отдельных органов к радиоактивному излучению Ткани Эквивалентная доза % Костная ткань 0, 03 Щитовидная железа 0, 03 Красный костный мозг 0, 12 Легкие 0, 12 Молочная железа 0, 15 Яичники, семенники 0, 25 Другие ткани 0, 3 Организм в целом

Радиоактивные излучения оказывают сильное биологическое действие на ткани живого организма, заключающееся в ионизации атомов и молекул среды. Биологическое действие радиоактивных излучений

Живая клетка — сложный механизм, не способный продолжать нормальную деятельность даже при малых повреждениях отдельных его участков. Даже слабые излучения могут нанести клеткам существенные повреждения и вызвать опасные заболевания (лучевая болезнь). При большой интенсивности излучения живые организмы погибают. Опасность излучения заключается в том, что они не вызывают никаких болевых ощущений даже при смертельных дозах. Биологическое действие радиоактивных излучений

Биологическое действие радиоактивных излучений Изменения клетки: — Разрушение хромосом — Нарушение способности к делению — Изменение проницаемости клеточных мембран — Разбухание ядер клето к

Облучение может оказывать и определённую пользу Быстроразмножающиеся клетки в раковых опухолях более чувствительны к облучению. На этом основано подавление раковой опухали γ -лучами радиоактивных препаратов, которые для этой цели более эффективны, чем рентгеновские лучи

Наиболее чувствительные к излучению ядра клеток: 1. Клетки костного мозга (нарушается процесс образования крови) 2. Поражение клеток пищеварительного тракта и др. органы. Биологическое действие радиоактивных излучений

Генетические последствия радиации — проявляются в виде генных мутаций, а также изменения числа или структуры хромосом. Доза в 1 Гр, полученная при низком радиационном фоне особями мужского пола (для женщин оценки менее определенны), вызывает появление от 1000 до 2000 мутаций, приводящих к серьезным последствиям, и от 30 до 1000 хромосомных перестроек (аберраций) на каждый миллион живых новорожденных.

Радиоактивные отходы РАО Отходы, содержащие радиоактивные изотопы химических элементов и не имеющие практической ценности. Это ядерные материалы и радиоактивные вещества, дальнейшее использование которых не предусматривается.

Классификация радиоактивных отходов По агрегатному состоянию: Жидкие Твёрдые Газообразные По составу излучения: α – излучение β — излучение γ — излучение нейтронное излучение По времени жизни: короткоживущие (менее 1 года) среднеживущие (от года до 100 лет) долгоживущие (более 100 лет) По активности: Низкоактивные Среднеактивные Высокоактивные

Авария на Чернобыльской АЭС показала огромную опасность радиоактивных излучений. Все люди должны иметь представление об этой опасности и мерах защиты от неё. 26 апреля 1986 г.

Методы и средства защиты от ионизирующих излучений увеличение расстояния между оператором и источником; сокращение продолжительности работы в поле излучения; экранирование источника излучения; дистанционное управление; использование манипуляторов и роботов; полная автоматизация технологического процесса; использование средств индивидуальной защиты и предупреждение знаком радиационной опасности; постоянный контроль за уровнем излучения и за дозами облучения персонала.

Самый простой метод защиты – это удаление персонала от источника излучения на достаточно большое расстояние. Поэтому все объёмы с радиоактивными препаратами не следует брать руками. Нужно пользоваться специальными щипцами с длинной ручкой. Если удаление от источника излучения на достаточно большое расстояние не возможно. Используют для защиты от излучения преграды из поглощающих материалов.