Заболевания, эндокринологи. МРТ
Поиск по сайту

Мейоз и митоз - отличие, фазы. Жизненный цикл клетки. Митоз. Мейоз Общим для митоза и мейоза является

1. Чем митоз отличается от мейоза?

Ответ. Митоз - универсальное деление соматических клеток, в результате которого из исходной (материнской) клетки образуются 2 дочерние клетки, генетически тождественные материнской.

Мейоз - особый способ деления, в результате которого образуется 4 клетки с набором хромосом уменьшенным вдвое по сравнению с материнской (обычно образуются клетки с гаплоидным набором хромосом) , причем все образовавшиеся клетки генетически отличаются друг от друга.

В мейозе происходит не одно деление (как в митозе) , а два последовательных деления - редукционное и эквационное.

В мейозе (в профазе первого деления) происходит конъюгация гомологичных хромосом и кроссинговер, а в митозе - не происходит.

В анафазе первого деления мейоза к полюсам расходятся не хроматиды, а целые хромосомы

2. Какие фазы митоза вы знаете?

Ответ. Различают следующие четыре фазы митоза: профаза, метафаза, анафаза и телофаза. В профазе хорошо видны центриоли - образования, находящиеся в клеточном центре и играющие роль в делении дочерних хромосом животных. Центриоли делятся и расходятся к разным полюсам клетки. От центриолей протягиваются микротрубочки, образующие нити веретена деления, которое регулирует расхождение хромосом к полюсам делящейся клетки.

В конце профазы ядерная оболочка распадается, ядрышко постепенно исчезает, хромосомы спирализуются и в результате этого укорачиваются и утолщаются, и их уже можно наблюдать в световой микроскоп. Еще лучше они видны на следующей стадии митоза - метафазе.

В метафазе хромосомы располагаются в экваториальной плоскости клетки. При этом хорошо видно, что каждая хромосома, состоящая из двух хроматид, имеет перетяжку - центромеру. Хромосомы своими центромерами прикрепляются у нити веретена деления. После деления центромеры каждая хроматида становится самостоятельной дочерней хромосомой.

Затем наступает следующая стадия митоза - анафаза, во время которой дочерние хромосомы (хроматиды одной хромосомы) расходятся к разным полюсам клетки.

Следующая стадия деления клетки - телофаза. Она начинается после того, как дочерние хромосомы, состоящие из одной хроматиды, достигли полюсов клетки. На этой стадии хромосомы вновь деспирализуются и приобретают такой же вид, какой они имели до начала деления клетки в интерфазе (длинные тонкие нити). Вокруг них возникает ядерная оболочка, а в ядре формируется ядрышко, в котором синтезируются рибосомы. В процессе деления цитоплазмы все органоиды (митохондрии, комплекс Гольджи, рибосомы и др.) распределяются между дочерними клетками более или менее равномерно.

Вопросы после §28

1. Что такое апоптоз?

Ответ. У простейших и бактерий деление клетки – основной способ размножения. Амеба, например, не подвергается естественной смерти, и вместо гибели она просто делится на две новые клетки. Понятно, что клетки многоклеточного организма не могут делиться бесконечно, иначе все существа, и люди в том числе, стали бы бессмертными. Этого не происходит потому, что ДНК клетки содержит особые «гены смерти», которые рано или поздно активируются. Это приводит к синтезу особых белков, которые убивают эту клетку: она сжимается, ее органоиды и мембраны разрушаются, но таким образом, чтобы их части можно было использовать вторично. Такая «запрограммированная» клеточная смерть называется апоптозом. Но от своего «рождения» до апоптоза клетка проходит множество нормальных клеточных циклов. У различных видов организмов клеточный цикл занимает разное время: у бактерий – около 20 мин, у инфузории-туфельки – от 10 до 20 ч. Клетки тканей многоклеточных организмов на ранних стадиях его развития делятся очень часто, а затем клеточные циклы значительно удлиняются. Например, сразу после рождения нейроны животных делятся часто: 80 % головного мозга формируется именно тогда. Однако большинство из этих клеток быстро теряет способность к делению, и часть из них доживает не делясь до естественной смерти животного от старости.

2. Какой цикл называют митотическим?

Ответ. Обязательным компонентом каждого клеточного цикла является митотический цикл, который включает в себя подготовку клетки к процессу деления и само деление. Кроме того, в жизненный цикл входят длинные или короткие периоды покоя, когда клетка выполняет свои функции в организме. После каждого из таких периодов клетка должна перейти либо к митотическому циклу, либо к апоптозу

3. Какие процессы происходят в клетке в интерфазу?

Ответ. Подготовка клетки к делению получила название интерфазы. Она состоит из трех периодов.

Пресинтетический период (G1) – наиболее продолжительная часть интерфазы. Он может продолжаться у различных видов клеток от 2–3 ч до нескольких суток. Этот период следует сразу же за предшествующим делением, во время него клетка растет, накапливая энергию и вещества для последующего удвоения ДНК.

Синтетический период (S), который обычно длится 6–10 ч, включает в себя удвоение ДНК, синтез белков, необходимых для формирования хромосом, а также увеличение количества РНК. К концу этого периода каждая хромосома уже состоит из двух идентичных хроматид, соединенных друг с другом в области центромеры. В этот же период удваиваются центриоли.

Постсинтетический период (G2) наступает после удвоения хромосом. Он длится 2–5 ч; за это время накапливается энергия для предстоящего митоза и синтезируются белки микротрубочек, которые впоследствии образуют веретено деления. Теперь клетка может приступать к митозу.

Прежде чем перейти к описанию способов деления клетки, рассмотрим процесс удвоения ДНК, в результате которого в синтетическом периоде образуются сестринские хроматиды.

4. В какой период интерфазы происходит репликация ДНК?

Ответ. Удвоение молекулы ДНК называют также репликацией или редупликацией. Во время репликации часть молекулы «материнской» ДНК расплетается на две нити с помощью специального фермента, причем это достигается разрывом водородных связей между комплементарными азотистыми основаниями: аденином – тимином и гуанином – цитозином. Далее к каждому нуклеотиду разошедшихся нитей ДНК фермент ДНК-полимераза подстраивает комплементарный ему нуклеотид. Таким образом, образуются две двуцепочечные молекулы ДНК, в состав каждой из которых входят одна цепочка «материнской» молекулы и одна новосинтезированная («дочерняя») цепочка. Эти две молекулы ДНК абсолютно идентичны.

Мейоз – это способ деления клеток эукариот, при котором образуются гаплоидные клетки. Этим мейоз отличается от митоза, при котором образуются диплоидные клетки.

Кроме того, мейоз протекает в два следующих друг за другом деления, которые называют соответственно первым (мейоз I) и вторым (мейоз II). Уже после первого деления клетки содержат одинарный, т. е. гаплоидный, набор хромосом. Поэтому первое деление часто называют редукционным . Хотя иногда термин «редукционное деление» применяют по отношению ко всему мейозу.

Второе деление называется эквационным и по механизму протекания сходно с митозом. В мейозе II к полюсам клетки расходятся сестринские хроматиды.

Мейозу, как и митозу, в интерфазе предшествует синтез ДНК – репликация, после которой каждая хромосома состоит уже из двух хроматид, которые называют сестринскими. Между первым и вторым делениями синтеза ДНК не происходит.

Если в результате митоза образуются две клетки, то в результате мейоза – 4. Однако если организм производит яйцеклетки, то остается только одна клетка, сконцентрировавшая в себе питательные вещества.

Количество ДНК перед первым делением принято обозначать как 2n 4c. Здесь n обозначает хромосомы, c – хроматиды. Это значит, что каждая хромосома имеет гомологичную себе пару (2n), в то же время каждая хромосома состоит из двух хроматид. С учетом наличия гомологичной хромосомы получается четыре хроматиды (4c).

После первого и перед вторым делением количество ДНК в каждой из двух дочерних клетках сокращается до 1n 2c. То есть гомологичные хромосомы расходятся в разные клетки, но продолжают состоять из двух хроматид.

После второго деления образуются четыре клетки с набором 1n 1c, т. е. в каждой присутствует только одна хромосома из пары гомологичных и состоит она только из одной хроматиды.

Ниже приводится подробное описание первого и второго мейотического деления. Обозначение фаз такое же как при митозе: профаза, метафаза, анафаза, телофаза. Однако протекающие в эти фазы процессы, особенно в профазе I, несколько отличаются.

Мейоз I

Профаза I

Обычно это самая длинная и сложная фаза мейоза. Протекает намного дольше, чем при митозе. Связано это с тем, что в это время гомологичные хромосомы сближаются и обмениваются участками ДНК (происходят конъюгация и кроссинговер).


Конъюгация - процесс сцепления гомологичных хромосом. Кроссинговер - обмен идентичными участками между гомологичными хромосомами. Несестринские хроматиды гомологичных хромосом могут обменяться равнозначными участками. В местах, где происходит такой обмен формируется так называемая хиазма .

Спаренные гомологичные хромосомы называются бивалентами , или тетрадами . Связь сохраняется до анафазы I и обеспечивается центромерами между сестринскими хроматидами и хиазмами между несестринскими.

В профазе происходит спирализация хромосом, так что к концу фазы хромосомы приобретают характерную для них форму и размеры.

На более поздних этапах профазы I ядерная оболочка распадается на везикулы, ядрышки исчезают. Начинает формироваться мейотическое веретено деления. Образуются три вида микротрубочек веретена. Одни прикрепляются к кинетохорам, другие - к трубочкам, нарастающим с противоположного полюса (конструкция выполняет функцию распорок). Третьи формируют звезчатую структуру и прикрепляются к мембранному скелету, выполняя функцию опоры.

Центросомы с центриолями расходятся к полюсам. Микротрубочки внедряются в область бывшего ядра, прикрепляются к кинетохорам, находящимся в области центромер хромосом. При этом кинетохоры сестринских хроматид сливаются и действуют единым целым, что позволяет хроматидам одной хромосомы не разъединяться и в дальнейшем вместе отойти к одному из полюсов клетки.

Метафаза I

Окончательно формируется веретено деления. Пары гомологичных хромосом располагаются в плоскости экватора. Они выстраиваются друг против друга по экватору клетки так, что экваториальная плоскость оказывается между парами гомологичных хромосом.

Анафаза I

Гомологичные хромосомы разъединяются и расходятся к разным полюсам клетки. Из-за произошедшего в профазу кроссинговера их хроматиды уже не идентичны друг другу.

Телофаза I

Восстанавливаются ядра. Хромосомы деспирализуются в тонкий хроматин. Клетка делится надвое. У животных впячиванием мембраны. У растений образуется клеточная стенка.

Мейоз II

Интерфаза между двумя мейотическими делениями называется интеркинезом , он очень короткий. В отличие от интерфазы удвоения ДНК не происходит. По-сути она и так удвоена, просто в каждой из двух клеток содержится по одной из гомологичных хромосом. Мейоз II протекает одновременно в двух клетках, образовавшихся после мейоза I. На схеме ниже изображено деление только одной клетки из двух.


Профаза II

Короткая. Снова исчезают ядра и ядрышки, а хроматиды спирализуются. Начинает формироваться веретено деления.

Метафаза II

К каждой хромосоме, состоящей из двух хроматид, прикрепляется по две нити веретена деления. Одна нить с одного полюса, другая – с другого. Центромеры состоят из двух отдельных кинетохор. Метафазная пластинка образуется в плоскости перпендикулярной экватору метафазы I. То есть если родительская клетка в мейозе I делилась вдоль, то теперь две клетки будут делиться поперек.

Анафаза II

Белок, связывающий сестринские хроматиды, разделяется, и они расходятся к разным полюсам. Теперь сестринские хроматиды называются сестринскими хромосомами.

Телофаза II

Подобна телофазе I. Происходит деспирализация хромосом, исчезновение веретена деления, образование ядер и ядрышек, цитокинез.

Значение мейоза

В многоклеточном организме мейозом делятся только половые клетки. Поэтому главное значение мейоза – это обеспечение механизм а полового размножения, при котором сохраняется постоянство числа хромосом у вида .

Другое значение мейоза – это протекающая в профазе I перекомбинация генетической информации, т. е. комбинативная изменчивость. Новые комбинации аллелей создаются в двух случаях. 1. Когда происходит кроссинговер, т. е. несестринские хроматиды гомологичных хромосом обмениваются участками. 2. При независимом расхождении хромосом к полюсам в обоих мейотических делениях. Другими словами, каждая хромосома может оказаться в одной клетке в любой комбинации с другими негомологичными ей хромосомами.

Уже после мейоза I клетки содержат разную генетическую информацию. После второго деления все четыре клетки отличаются между собой. Это важное отличие мейоза от митоза, при котором образуются генетически идентичные клетки.

Кроссинговер и случайное расхождение хромосом и хроматид в анафазах I и II создают новые комбинации генов и являются одной из причин наследственной изменчивости организмов , благодаря которой возможна эволюция живых организмов.

Цель урока: повторение материала о способах размножения клеток.

Задачи

Образовательная: сформировать и закрепить знания о двух видах деления клеток, о значении деления клеток для одноклеточных и многоклеточных организмов, о процессах, происходящих в различных фазах митоза и мейоза, об отличиях мейоза и митоза.

Развивающая: развитие умений работать в группе, характеризовать объекты и явления, сравнивать их, обосновывать выводы, применять знания, оценивать себя и свои знания; развитие интереса к предмету.

Воспитательная: воспитание уважительного отношения друг к другу.

Оборудование: листы ватмана и бумаги, фломастеры, клей, скотч, ножницы, файлы с заданиями, карточка-инструкция для каждой команды.

Подготовка к уроку

1. На предыдущем уроке учащихся следует ознакомить с принципами и правилами проведения урока-мастерской.

2. Так как тема «Деление клетки» изучалась в 9-м классе и учащиеся многое забыли, в качестве домашнего задания они должны были повторить материал по теме: «Деление клетки».

Деление класса на команды

Учащимся предлагается выбрать один из следующих вопросов и записать его на листке бумаги. (Вероятнее всего ученик выберет вопрос, ответ на который он знает или предполагает, что знает.)

В чем биологический смысл мейоза?
Чем отличается митоз от мейоза?
В чем заключается биологический смысл митоза?

Из листка с написанным вопросом надо сложить бумажный самолетик. Встав в круг, учащиеся запускают свои самолетики (все одновременно по команде учителя) и, подняв упавший рядом самолетик, повторяют эту операцию 2 раза. Раскрыв самолетики, учащиеся распределяются на три команды – по одинаковым вопросам.

Каждая команда получает файл, в котором находится материал для работы: список терминов, определения, схемы, историческая справка.

Карточка-инструкция

Выберите из списка терминов (Приложение 2) те, которые имеют отношение к теме «Деление клетки. Митоз. Мейоз». Выбранные слова команды зачитывают вслух.

Подберите определения (Приложение 3), соответствующие выбранным терминам из предыдущего задания. Будьте внимательны, некоторые определения заменены! Чтобы выполнить это задание правильно, необходимо у другой команды найти и попросить свое определение. Терминами меняться нельзя!

К процессам, протекающим в клетке во время митоза или мейоза, подберите соответствующие рисунки (Приложение 4).

На лист ватмана наклейте слова, определения и рисунки в логической последовательности. Подготовьте небольшой рассказ о данном биологическом процессе.

(Команды вывешивают свои работы на стенд. Члены команд рассказывают о процессах, изображенных на ватмане.)

Ответьте на вопрос, который записан на вашем листке-«самолетике». Ответ запишите в тетради. (При выполнении этого задания можно пользоваться первоисточником. Каждая команда зачитывает свой ответ на вопрос вслух.)

Рефлексия

Вариант 1 (если до конца урока осталось много времени).

Приведите два-три аргумента в защиту того, что тему «Деление клетки. Митоз и мейоз» необходимо изучать в курсе общей биологии средней школы.

Вариант 2 (если времени недостаточно).

Довольны ли вы уроком, своей работой на уроке? Подумайте, оцените свое эмоциональное состояние. Запишите ответ на листочке и, уходя, прикрепите на стенд.

Домашнее задание

Ответьте на следующие вопросы.

Какие факторы вызывают нарушение митоза и мейоза?
К каким последствиям это может привести?

Приложение 1. Историческая справка

Флемминг Вальтер (1843–1905), немецкий гистолог. Профессор университетов в Праге (с 1873) и Киле (1876–1901). Основные труды по гистологии моллюсков, регенерации тканей, изучению соединительной и жировой тканей, строения фолликулов, клеток спинальных ганглиев и др. Особую известность приобрели его исследования тонкого строения клетки. С помощью разработанных им методов фиксации (жидкость Флемминга) и окраски изучал структуру протоплазмы, ядра, центросом и, особенно детально, процесс деления клетки (прямое и непрямое). Эти исследования имели большое значение для развития цитологии; его методы фиксации и окраски получили широкое распространение в лабораторной практике.

Страсбургер Эдвард (1844–1912), немецкий ботаник, по происхождению поляк, член Польской АН в Кракове (1888). Учился в Варшаве, Бонне и Йене. Был доцентом Варшавского (1867–1869), профессором Йенского (1869–1880) и Боннского (1880–1911) университетов. Основные труды в области цитологии, анатомии и эмбриологии растений. Исследовал митоз. Описал мейоз у высших растений, объяснил биологическое значение редукции числа хромосом. Изучал процесс оплодотворения, явления партеногенеза и апогамии. Работы ученого имели большое значение для подготовки хромосомной теории наследственности и развития представлений о генетическом единстве высших растений. Усовершенствовал методику цитологических исследований. Соавтор переиздававшегося курса ботаники (Учебник ботаники, 1894; 30-е изд. – 1971), переведенного на ряд языков, в том числе на русский.

Чистяков Иван Дорофеевич (1843–1877), русский ботаник. Окончил Московский университет (1868) и был оставлен при нем, с 1871 г. профессор и заведующий Ботаническим садом. Основоположник московской школы эмбриологов и цитологов растений. Одним из первых наблюдал и описал митоз у растений (1874).

Приложение 2. Термины

(Подчеркнутые слова – верный выбор учащихся.)

Файл № 1 (синий)

Митоз , профаза , метафаза , анафаза , телофаза , амитоз , клеточный цикл , фотосинтез.

Файл № 2 (зеленый)

Мейоз , 1-е деление , профаза 1 , метафаза 1 , анафаза 1 , телофаза 1 , кроссинговер , ассимиляция, диссимиляция.

Файл № 3 (красный)

Мейоз , 2-е деление , профаза 2 , метафаза 2 , анафаза 2 , телофаза 2 , интерфаза , полимеры.

Приложение 3. Определения

Файл № 1 (синий)

Митоз – это способ деления эукариотических клеток, при котором каждая из двух вновь возникающих клеток получает такой же генетический материал, как в исходной клетке.

Профаза – хромосомы спирализуются и становятся хорошо заметными в световой микроскоп, исчезает ядрышко, две центриоли расходятся к полюсам клетки, отходящие от них микротрубочки формируют веретено деления, ядерная оболочка распадается.

Анафаза

Телофаза – вокруг собранных у полюсов хромосом формируется ядерная оболочка, хромосомы деспирализуются (из компактных превращаются в тонкие и длинные, неразличимые в световой микроскоп). Образуются ядрышки. Эта стадия заканчивается цитокинезом (разделением цитоплазмы) и образованием двух диплоидных клеток.

Амитоз прямое деление ядер путем перетяжки, не всегда заканчивается цитокинезом, в результате обычно возникают многоядерные клетки. После амитоза клетки не способны приступить к митотическому делению. Этот процесс характерен для отмирающих клеток.

Клеточный цикл – период жизни клетки от деления до деления, основная часть жизни клетки.

Интерфаза – период между делениями (лат. inter – между). Клетка интенсивно растет, увеличивается количество структур и веществ в клетки, количество хромосом удваивается.

(Определение интерфазы в этом файле лиш нее, а определение метафазы отсутствует .)

Файл № 2 (зеленый)

Мейоз (греч. meiosis

1-е деление – первое деление мейоза.

Профаза 1 – хромосомы начинают конденсироваться и становятся различимыми в световой микроскоп. Затем гомологичные хромосомы начинают сближаться друг с другом – конъюгировать. Пару конъюгирующих хромосом называют бивалентом (каждый бивалент образован 4 хроматидами). Заканчивается репликация ДНК. Фаза заканчивается исчезновением ядерной оболочки и ядрышка.

Метафаза 1 – биваленты выстраиваются в экваториальной плоскости клетки. К центромерам прикрепляются нити веретена деления.

Анафаза 1 – бивалент распадается на две хромосомы, которые отходят к разным полюсам клетки.

Телофаза 1 – хромосомы деконденсируются (из компактных превращаются в тонкие и длинные, неразличимые в световой микроскоп). Вокруг собранных у полюсов хромосом формируется ядерная оболочка. Образуются ядрышки. Эта стадия заканчивается цитокинезом (разделением цитоплазмы) и образованием двух диплоидных клеток.

Метафаза

(Определение метафазы в этом файле лиш нее, а определение кроссинговера отсутствует .)

Файл № 3 (красный)

Мейоз (греч. meiosis – уменьшение) – это способ деления эукариотических клеток, при котором происходит редукция (уменьшение) числа хромосом, т.е. из диплоидной (содержащей двойной набор хромосом) клетки образуются гаплоидные (содержащие одинарный набор хромосом).

2-е деление – второе деление мейоза.

Профаза 2 – хромосомы спирализуются и становятся хорошо заметными в световой микроскоп, исчезает ядрышко, две центриоли расходятся к полюсам клетки, отходящие от них микротрубочки формируют веретено деления.

Метафаза 2 – все хромосомы выстраиваются в экваториальной плоскости клетки, на этой стадии их можно хорошо различать и сосчитать в клетке.

Анафаза 2 – стадия, во время которой сестринские хроматиды, ставшие самостоятельными хромосомами, расходятся к противоположным полюсам клетки.

Телофаза 2 – вокруг собранных у полюсов хромосом формируется ядерная оболочка. Хромосомы деспирализуются (из компактных превращаются в тонкие и длинные, неразличимые в световой микроскоп). Образуются ядрышки. Эта стадия заканчивается цитокинезом (разделением цитоплазмы) и образованием четырех гаплоидных клеток.

Кроссинговер (англ. сrossing-over – прекрест) – обмен идентичными участками гомологичных хромосом.

(Определение кроссинговера в этом файле лиш нее, а определение интерфазы отсутствует .)

Цель: учащиеся углубляют знания о формах размножения организмов; формируются новые понятия о митозе и мейозе и их биологическом значении.

Оборудование:

  1. Учебно-наглядные пособия: табл., плакаты
  2. технические средства обучения: интерактивная доска, мультимедийные презентации, обучающие компьютерные программы.

План урока:

  1. Организационный момент
  2. Повторение.
    1. Что такое размножение?
    2. Какие типы размножения вам известны? Дайте им определения?
    3. Перечислите примеры бесполого размножения? Приведите примеры.
    4. Биологическое значение бесполого размножения?
    5. Какое размножение называется половым?
    6. Какие половые клетки вам известны?
    7. Чем гаметы отличаются от соматических клеток?
    8. Что такое оплодотворение?
    9. В чем заключается преимущества полового размножения по сравнению с бесполым размножением?
  3. Изучение нового материала

Ход урока

В основе передачи наследственной информации, размножения, а также роста, развития и регенерации лежит важнейший процесс – деление клеток. Молекулярная сущность деления заключена в способности ДНК к самоудвоению молекул.

Объявление темы урока. Поскольку фазы митоза и мейоза в общих чертах мы уже изучали в 9 классе, задачей общей биологии является рассмотрение этого процесса на молекулярном и биохимическом уровне. В связи с этим особое внимание мы уделим изменению хромосомных структур.

Клетка является не только единицей строения и функции у живых организмов, но также и генетической единицей. Это единица наследственности и изменчивости, проявляющихся в процессе деления клеток. Элементарным носителем наследственных свойств клетки является ген. Ген представляет собой отрезок молекулы ДНК из нескольких сотен нуклеотидов, где закодировано строение одной молекулы белка и проявление какого-то наследственного признака клетки. Молекула ДНК в комплексе с белком образует хромосому. Хромосомы ядра и локализованные в них гены являются основными носителями наследственных свойств клетки. В начале клеточного деления хромосомы укорачиваются и окрашиваются более интенсивно, так что становятся видимыми по отдельности.

В делящейся клетке хромосома имеет вид двойной палочки и состоит из двух разделенных щелью вдоль оси хромосомы половинок или хроматид. Каждая из хроматид содержит одну молекулу ДНК.

Внутреннее строение хромосом, число нитей ДНК в них меняются в жизненном цикле клетки.

Вспомним: что такое клеточный цикл? Какие этапы выделяют в клеточном цикле? Что происходит на каждом этапе?

Интерфаза включает в себя три периода.

Пресинтетический период G 1 наступает сразу после деления клетки. В это время в клетке происходит синтез белков, АТФ, разных видов РНК и отдельных нуклеотидов ДНК. Клетка растет, и в ней интенсивно накапливаются различные вещества. Каждая хромосома в этот период однохроматидна, генетический материал клетки обозначается 2n 1xp 2с (n – набор хромосом, хр – число хроматид, с – количество ДНК).

В синтетическом периоде S осуществляется редупликация молекул ДНК клетки. В результате удвоения ДНК в каждой из хромосом оказывается вдвое больше ДНК, чем было до начала S-фазы, но число хромосом не изменяется. Теперь генетический набор клетки составляет 2n 2xp 4с (диплоидный набор, хромосомы двухроматидны, количество ДНК – 4).

В третьем периоде интерфазы – постсинтетическом G 2 – продолжается синтез РНК, белков и накопление клеткой энергии. По окончании интерфазы клетка увеличивается в размерах и начинается ее деление.

Деление клетки.

В природе существует 3 способа клеточного деления – амитоз, митоз мейоз.

Амитозом делятся прокариотические организмы и некоторые клетки эукариот, например, мочевого пузыря, печени человека, а также старые либо поврежденные клетки. Сначала в них делится ядрышко, затем ядро на две или несколько частей путем перетяжек и в конце деления перешнуровывается цитоплазма на две или несколько дочерних клеток. Распределение наследственного материала и цитоплазмы не равномерно.

Митоз – универсальный способ деления эукариотических клеток, при котором из диплоидной материнской клетки образуются две подобные ей дочерние клетки.

Длительность митоза 1-3 часа и в его процессе 4 фазы: профаза, метафаза, анафаза и телофаза.

Профаза. Обычно самая продолжительная фаза клеточного деления.

Увеличивается объем ядра, хромосомы спирализуются. В это время хромосома состоит из двух хроматид, соединенных между собой в области первичной перетяжки или центромеры. Затем растворяются ядрышки и ядерная оболочка – хромосомы лежат в цитоплазме клетки. Центриоли расходятся к полюсам клетки и образуют между собой нити веретена деления, а в конце профазы нити крепятся к центромерам хромосом. Генетическая информация клетки, по-прежнему, как в интерфазе (2n 2хр 4с).

Метафаза. Хромосомы располагаются строго в зоне экватора клетки, образуя метафазную пластину. На стадии метафазы хромосомы имеют самую малую длину, так как в это время они сильно спирализованы и конденсированы. Поскольку хромосомы хорошо видны подсчет и изучение хромосом обычно проходит в этот период деления. По продолжительности это самая короткая фаза митоза, так как она длится то мгновение, когда центромеры удвоенных хромосом располагаются строго по линии экватора. И уже в следующий момент начинается следующая фаза.

Анафаза. Каждая центромера расщепляется на две, и нити веретена оттягивают дочерние центромеры к противоположным полюсам. Центромеры тянут за собой отделившиеся одна от другой хроматиды. На полюса приходят по одной хроматиде из пары – это дочерние хромосомы. Количество генетической информации на каждом полюсе теперь равно (2n 1хр 2с).

Завершается митоз телофазой. Процессы, происходящие в этой фазе, обратны процессам, которые наблюдались в профазе. На полюсах происходит деспирализация дочерних хромосом, они утоньшаются и становятся слаборазличимыми. Вокруг них образуются ядерные оболочки, а затем появляются ядрышки. Одновременно с этим идет деление цитоплазмы: в животных клетках – перетяжкой, а у растений со средины клетки к периферии. После образования цитоплазматической мембраны в растительных клетках формируется целлюлозная оболочка. Образуются две дочерние клетки с диплоидным набором однохроматидных хромосом (2n 1хр 2с).

Следует отметить, что все процессы, происходящие в клетке, в том числе и митоз, находятся под генетическим контролем. Гены контролируют последовательные стадии редупликации ДНК, движение, спирализацию хромосом и т.д.

Биологическое значение митоза:

  1. Точное распределение хромосом и их генетической информации между дочерними клетками.
  2. Обеспечивает постоянство кариотипа и генетическую преемственность во всех клеточных проявлениях; т.к. иначе было бы не возможным постоянство строения и правильность функционирования органов и тканей многоклеточного организма.
  3. Обеспечивает важнейшие процессы жизнедеятельности – эмбриональное развитие, рост, восстановление тканей и органов, а также бесполое размножение организмов.

Мейоз

Образование половых клеток (гамет) происходит иначе, чем процесс размножения соматических клеток. Если бы образование гамет шло таким же путем, то после оплодотворения (слияния мужской и женской гамет) число хромосом каждый раз удваивалось бы. Однако этого не происходит. Каждому виду свойственно определенное число и свой специфический набор хромосом (кариотип).

Мейоз – это особый вид деления, когда из диплоидных (2п) соматических клеток половых органов образуются половые клетки (гаметы) у животных и растений или споры у споровых растений с гаплоидным (п) набором хромосом в этих клетках. Затем в процессе оплодотворения ядра половых клеток сливаются, и восстанавливается диплоидный набор хромосом (n+n=2n).

В непрерывном процессе мейоза идут два последовательных деления: мейоз I и мейоз II. В каждом делении те же фазы, что и в митозе, но разные по продолжительности и изменениям генетического материала. В результате мейоза I число хромосом в образовавшихся дочерних клетках уменьшается вдвое (редукционное деление), а при мейозе II гаплоидность клеток сохраняется (эквационное деление).

Профаза мейоза I – удвоенные в интерфазе гомологичные хромосомы попарно сближаются. При этом отдельные хроматиды гомологичных хромосом переплетаются, перекрещиваются между собой и могут разрываться в одинаковых местах. Во время этого контакта гомологичные хромосомы могут обмениваться соответствующими участками (генами), т.е. идет кроссинговер. Кроссинговер вызывает перекомбинацию генетического материала клетки. После этого процесса гомологичные хромосомы снова разъединяются, растворяются оболочки ядра, ядрышек и образуется веретено деления. Генетическая информация клетки в профазе составляет 2n 2хр 4с (диплоидный набор, хромосомы двухроматидные, количество молекул ДНК – 4).

Метафаза мейоза I – хромосомы располагаются в плоскости экватора. Но если в метафазе митоза гомологичные хромосомы имеют положение, независимое друг от друга, то в мейозе они лежат рядом – попарно. Генетическая информация прежняя (2n 2хр 4с).

Анафаза I – к полюсам клетки расходятся не половинки хромосом из одной хроматиды, а целые хромосомы, состоящие из двух хроматид. Значит, из каждой пары гомологичных хромосом в дочернюю клетку попадет лишь одна, но двухроматидная хромосома. Их число в новых клетках уменьшится вдвое (редукция числа хромосом). Количество генетической информации на каждом полюсе клетки становится меньше (1n 2хр 2с).

В телофазе первого деления мейоза формируются ядра, ядрышки и делится цитоплазма – образуются две дочерние клетки с гаплоидным набором хромосом, но эти хромосомы состоят из двух хроматид (1n 2хр 2с).

Вслед за первым наступает второе деление мейоза, но ему не предшествует синтез ДНК. После короткой профазы мейоза II двухроматидные хромосомы в метафазе мейоза II располагаются в плоскости экватора и крепятся к нитям веретена деления. Их генетическая информация прежняя – (1n 2хр 2с).

В анафазе мейоза II к противоположным полюсам клетки расходятся хроматиды и в телофазе мейоза II образуются четыре гаплоидные клетки с однохроматидными хромосомами (1n 1хр 1с). Таким образом, в сперматозоидах и яйцеклетках число хромосом уменьшается вдвое. Такие половые клетки образуются у половозрелых особей различных организмов. Процесс формирования гамет называют гаметогенез.

Биологическое значение мейоза:

1.Образование клеток с гаплоидным набором хромосом. При оплодотворении обеспечивается постоянный для каждого вида набор хромосом и постоянное количество ДНК.

2.Во время мейоза происходит случайное расхождение негомологичных хромосом, что приводит к большому числу возможных комбинаций хромосом в гаметах. У человека число возможных комбинаций хромосом в гаметах составляет 2 n , где n – число хромосом гаплоидного набора: 2 23 =8 388 608. Число возможных комбинаций у одной родительской пары 2 23 х 2 23

3.Происходящие в мейозе перекрест хромосом, обмен участками, а также независимое расхождение каждой пары гомологичных хромосом

определяют закономерности наследственной передачи признака от родителей потомству.

Из каждой пары двух гомологичных хромосом (материнской и отцовской), входящих в хромосомный набор диплоидных организмов, в гаплоидном наборе яйцеклетки или сперматозоида содержится только одна хромосома. При этом она может быть: 1) отцовской хромосомой; 2) материнской хромосомой; 3) отцовской с участком материнской хромосомы; 4) материнской с участком отцовской. Эти процессы приводят к эффективной рекомбинации наследственного материала в гаметах, образуемым организмом. В результате обуславливается генетическая разнородность гамет и потомства.

При объяснении учащиеся заполняют таблицу: «Сравнительная характеристика митоза и мейоза»

Типы деления Митоз (непрямое деление) Мейоз (редукционное деление)
Число делений одно деление два деление
Происходящие процессы Репликация и транскрипция отсутствуют В профазе 1 происходит конъюгация гомологичных хромосом и кроссинговер
К полюсам клетки расходятся хроматиды В первом делении к полюсам клетки расходятся гомологичные хромосомы
Число дочерних клеток 2 4
Набор хромосом в дочерних клетках (n – набор хромосом, хр – хроматиды, с – число ДНК) Число хромосом остается постоянным2n 1хр 2c (хромосомы однохроматидные) Число хромосом уменьшается вдвое 1n 1хр 1c (хромосомы однохроматидные)
Клетки, где происходит деление Соматические клетки Соматические клетки половых органов животных; спорообразующие клетки растений
Значение Обеспечивает бесполое размножение и рост живых организмов Служит для образования половых клеток

Закрепление изученного материала (по табл., тестовая работа).

Литература:

  1. Ю.И. Полянский. Учебник для 10-11 классов средней школы. –М.: «Просвещение», 1992.
  2. И.Н. Пономарева, О.А. Корнилова, Т.Е. Лощилина. Учебник «Биология» 11 класс, базовый уровень, –М.: «Вентана-Граф», 2010.
  3. С.Г. Мамонтов Биология для поступающих в ВУЗЫ. –М.: 2002.
  4. Н. Грин, У.Стаут, Д. Тейлор. Биология в 3 т. –М.: «Мир», 1993.
  5. Н.П. Дубинина. Общая биология. Пособие для учитетеля. –М.: 1990.
  6. Н.Н. Приходченко, Т.П. Шкурат «Основы генетики человека». Уч.пос. – Ростов н/Д: «Феникс», 1997.

Деление клеток посредством мейоза проходит в два основных этапа: мейоз I и мейоз II. В конце мейотического процесса образуются четыре . Прежде чем делящаяся клетка попадет в мейоз, она проходит через период , называемый интерфазой.

Интерфаза

  • Фаза G1: этап развития клетки перед синтезом ДНК. На этой стадии клетка подготавливаясь к делению увеличивается в массе.
  • S-фаза: период, в течение которого синтезируется ДНК. Для большинства клеток эта фаза занимает короткий промежуток времени.
  • Фаза G2: период после синтеза ДНК, но до начала профазы. Клетка продолжает синтезировать дополнительные белки и увеличиваться в размерах.

В последней фазе интерфазы клетка все еще имеет нуклеолы. окружено ядерной мембраной, а клеточное хромосомы дублируются, но находятся в форме . В две пары , образованных из репликации одной пары, расположены за пределами ядра. В конце интерфазы клетка переходит в первый этап мейоза.

Мейоз I:

Профаза I

В профазе I мейоза происходят следующие изменения:

  • Хромосомы конденсируются и присоединяются к ядерной оболочке.
  • Возникает синапсис (попарное сближение гомологичных хромосом) и образуется тетрада. Каждая тетрада состоит из четырех хроматид.
  • Может произойти генетическая рекомбинация.
  • Хромосомы сгущаются и отсоединяются от ядерной оболочки.
  • Подобно , центриоли мигрируют друг от друга, а ядерная оболочка и ядрышки разрушаются.
  • Хромосомы начинают миграцию к метафазной (экваториальной) пластине.

В конце профазы I клетка входит в метафазу I.

Метафаза I

В метафазе I мейоза происходят следующие изменения:

  • Тетрады выравниваются на метафазной пластине.
  • гомологичных хромосом ориентированы на противоположные полюса клетки.

В конце метафазы I клетка входит в анафазу I.

Анафаза I

В анафазе I мейоза происходят происходят следующие изменения:

  • Хромосомы перемещаются в противоположные концы клетки. Подобно митозу, кинетохоры взаимодействуют с микротрубочками, чтобы переместить хромосомы к полюсам клетки.
  • В отличие от митоза, остаются вместе после того, как перемещаются в противоположные полюса.

В конце анафазы I клетка входит в телофазу I.

Телофаза I

В телофазе I мейоза происходят следующие изменения:

  • Волокна веретена продолжают перемещать гомологичные хромосомы на полюса.
  • Как только движение завершено, каждый полюс клетки имеет гаплоидное количество хромосом.
  • В большинстве случаев цитокинез (деление ) происходит одновременно с телофазой I.
  • В конце телофазы I и цитокинеза образуются две дочерние клетки, каждая из которых имеет половину числа хромосом исходной родительской клетки.
  • В зависимости от типа клетки могут возникать различные процессы при подготовке к мейозу II. Однако генетический материал не реплицируется снова.

В конце телофазы I клетка входит в профазу II.

Мейоз II:

Профаза II

В профазе II мейоза происходят следующие изменения:

  • Ядерная и ядра разрушаются, пока появляется веретено деления.
  • Хромосомы больше не реплицируются в этой фазе.
  • Хромосомы начинают мигрировать к метафазной пластинке II (на экваторе клеток).

В конце профазы II клетки входят в метафазу II.

Метафаза II

В метафазе II мейоза происходят следующие изменения:

  • Хромосомы выстраиваются на метафазной пластинке II в центре клеток.
  • Кинетохорные нити сестринских хроматид расходятся к противоположным полюсам.

В конце метафазы II клетки входят в анафазу II.

Анафаза II

В анафазе II мейоза происходят следующие изменения:

  • Сестринские хроматиды разделяются и начинают перемещаться к противоположным концам (полюсам) клетки. Волокна веретена деления, не связанные с хроматидами, вытягиваются и удлиняют клетки.
  • Как только парные сестринские хроматиды отделены друг от друга, каждая из них считается полной хромосомой, называемые .
  • При подготовке к следующему этапу мейоза два полюса клеток также отдаляются друг от друга во время анафазы II. В конце анафазы II каждый полюс содержит полную компиляцию хромосом.

После анафазы II клетки входят в телофазу II.

Телофаза II

В телофазе II мейоза происходят следующие изменения:

  • Образуются отдельные ядра на противоположных полюсах.
  • Происходит цитокинез (деление цитоплазмы и образование новых клеток).
  • В конце мейоза II производятся четыре дочерние клетки. Каждая клетка имеет половину числа хромосом от исходной родительской клетки.

Результат мейоза

Конечным результатом мейоза является производство четырех дочерних клеток. Эти клетки имеют в двое меньше хромосом относительно родительской. При мейозе продуцируются только половые . Другие делятся посредством митоза. Когда половые объединяются во время оплодотворения, они становятся . Диплоидные клетки имеют полный набор гомологичных хромосом.