Заболевания, эндокринологи. МРТ
Поиск по сайту

Фармакокинетика и метаболизм лекарственных препаратов. Этапы фармакокинетики Выведение лекарственных веществ из организма


Под метаболизмом (биотрансформацией) лекарственных препаратов понимают комплекс их превращений в организме, в результате которых образуются полярные водорастворимые вещества - метаболиты. В большинстве случаев метаболиты менее активны и менее токсичны исходных соединений. Но из правила есть исключения, когда метаболиты активнее исходных соединений.
Метаболизм лекарственных препаратов в организме определяется генетическими факторами, полом, возрастом, особенностями питания, заболеванием и его тяжестью, факторами внешней среды, а также путем поступления в организм.
При пероральном приеме лекарственный препарат, прежде всего, всасывается слизистой пищеварительного канала, и уже здесь начинает претерпевать метаболические изменения. Некоторые лекарственные препараты метаболизируются не только ферментами пищеварительного канала, но и кишечными бактериями.
Принимаемые внутрь лекарственные препараты из-за поступления в системный кровоток через печень делятся на два типа, соответственно, с высоким и низким печеночным клиренсом. Для первого типа характерна высокая степень экстракции гепа- тоцитами из крови, которая в значительной мере зависит от скорости внутрипеченочного кровотока. Печеночный клиренс лекарственных препаратов второго типа определяется не скоростью кровотока, но емкостью ферментативных систем печени и скоростью их связывания с белками печени. Печени принадлежит исключительное место в метаболизме лекарственных препаратов, поэтому всегда необходимо уделять исключительное внимание ее функциональному состоянию. При заболеваниях печени метаболизм лекарственных препаратов всегда нарушается, и обычно замедляется. При циррозе печени их биодоступность возрастает из-за развития портокавальных анастомозов и поступления части в системный кровоток, минуя печень. В таких случаях может увеличиваться их токсическое влияние на мозг.
Метаболизм лекарственного препарата при приеме внутрь до попадания в системный кровоток называют «эффектом первого прохождения». Чем меньше доза лекарственного препарата, тем большая часть его метаболизируется до попадання в системный кровоток, и наоборот. С некоторой дозы участвующие в метаболизме лекарственного препарата ферментативные системы насыщаются, а его биодоступность возрастает.
Различают несинтетический (оксиление, восстановление, гидролиз) и синтетический типы и/или этапы реакций метаболизма. Несинтетический тип (этап I) делится на реакции, катализируемые микросомальными (эндоплазматического ретикулума) ферментами и немикросомальными ферментами. В основе синтетического (этап II) типа реакций лежит конъюнгация лекарственных средств с эндогенными субстратами (глюкуроновая кислота, сульфаты, глицин, глутатион, метильные группы и вода) че - рез гидроксильную, карбоксильную, аминную и эпоксидную функциональные группы. После завершения реакции молекула препарата становится более полярной и легче выводится из организма.
Микросомальному метаболизму подвергаются в первую очередь жирорастворимые лекарственные препараты, легко проникающие через мембраны клеток в эндоплазматический ретикулум, где они связываются с одним из цитохромов системы Р446-Р455, являющимися первичными компонентами окислительной ферментной системы. Скорость метаболизма определяется концентрацией цитохромов, соотношением их форм, сродством к субстрату, концентрацией цитохром-с-редуктазы и скоростью восстановления комплекса «лекарственный препарат - цитохром Р450». На нее влияет также конкурирование эндогенных и экзогенных субстратов. Дальнейшее окисление происходит под влиянием оксидазы и редуктазы при участии НАДФ и молекулярного кислорода. Оксидазы катализируют дезаминирование первичных и вторичных аминов, гидроксилирование боковых цепей и ароматических колец гетероциклических соединений, а также образование сульфоксидов и деалкилирования. Микросомальные ферменты контролируют также конъюгацию лекарственных препаратов с глюкуроновой кислотой. Этим путем из организма выводятся эстрогены, глюкокортикоиды, прогестерон, наркотические анальгетики, салицилаты, барбитураты, антибиотики, др.
Активность микросомальных ферментов разными веществами может активироваться и подавляяться. Активность цитохромов падает под влиянием ксикаина, совкаина, бенкаина, индерала, вискена, эралдина, др., и возрастает под влиянием барбитуратов, фенилбутазона, кофеина, этанола, никотина, бутадиона, нейролептиков, амидопирина, хлорциклизина, димедрола, мепробамата, трициклических антидепрессантов, бензонала, хинина, кордиамина, др.
Немикросомальному метаболизму подвергается небольшое число лекарственных препаратов, как, например, ацетилсалициловая кислота и сульфаниламиды.
При несинтетическом типе метаболизма из некоторых ксенобиотиков могут образовываться активные реакционно-способные вещества, включая эпоксиды и азотсодержащие оксиды. Последние при недостаточности эпоксидгидраз и глутатионпер- оксидаз взаимодействуют со структурными и ферментными белками и повреждают их. Повреждение придает им свойства аутоантигенов и в результате запускаются аутоиммунные реакции с возможными канцерогенезом, мутагенезом, тератогенезом, др.
Что касается синтетического типа метаболизма с анаболической направленностью реакций и образованием конъюгатов с остатками различных кислот или других соединений, сульфатирование формируется к моменту рождения, метилирование - спустя месяц жизни, глюкуронидация - спустя два месяца, соединение с цистеином и глутатионом - через три мсяца, и с глицином - спустя шесть месяцев. При этом недостаточность одного из путей образования парных соединений частично может компенсироваться другими.

История развития

Основы фармакокинетики создавались учёными разных специальностей в различных странах.

В 1913 немецкие биохимики Л. Михаэлис и M. Ментен предложили уравнение кинетики ферментативных процессов, широко используемое в современной фармакокинетике для описания метаболизма лекарственных средств .

При приёме внутрь лекарственного вещества основного характера (амины) всасываются обычно в тонком кишечнике (сублингвальные лекарственные формы всасываются из ротовой полости , ректальные - из прямой кишки), лекарственные вещества нейтрального или кислого характера начинают всасываться уже в желудке .

Всасывание характеризуется скоростью и степенью всасывания (так называемой биодоступностью). Степень всасывания - это количество лекарственного вещества (в процентах или в долях), которое попадает в кровь при различных способах введения. Скорость и степень всасывания зависит от лекарственной формы, а также от других факторов. При приёме внутрь многие лекарственные вещества в процессе всасывания под действием ферментов печени (или кислоты желудочного сока) биотрансформируются в метаболиты, в результате чего лишь часть лекарственных веществ достигает кровяного русла. Степень всасывания лекарственного вещества из желудочно-кишечного тракта , как правило, снижается при приёме лекарства после еды.

Распределение по органам и тканям

Для количественной оценки распределения дозу лекарственного вещества делят на его начальную концентрацию в крови (плазме , сыворотке), экстраполированную к моменту введения, или используют метод статистических моментов. Получают условную величину объёма распределения (объём жидкости, в котором нужно растворить дозу, чтобы получить концентрацию, равную кажущейся начальной концентрации). Для некоторых водорастворимых лекарственных веществ величина объёма распределения может принимать реальные значения, соответствующие объёму крови, внеклеточной жидкости или всей водной фазы организма . Для жирорастворимых лекарственных средств эти оценки могут превышать на 1-2 порядка реальный объём организма благодаря избирательной кумуляции лекарственного вещества жировыми и другими тканями.

Метаболизм

Лекарственные вещества выделяются из организма либо в неизмененном виде, либо в виде продуктов их биохимических превращений (метаболитов). При метаболизме наиболее распространены процессы окисления , восстановления, гидролиза , а также соединения с остатками глюкуроновой, серной , уксусной кислот, глутатионом. Метаболиты, как правило, более полярны и лучше растворимы в воде по сравнению с исходным лекарственным веществом, поэтому быстрее выводятся с мочой . Метаболизм может протекать спонтанно, но чаще всего катализируется ферментами (например, цитохромами), локализованными в мембранах клеток и клеточных органелл печени , почек , лёгких , кожи , мозга и других; некоторые ферменты локализованы в цитоплазме . Биологическое значение метаболических превращений - подготовка липорастворимых лекарственных средств к выведению из организма.

Экскреция

Лекарственные вещества выводятся из организма с мочой , калом , потом , слюной , молоком , с выдыхаемым воздухом. Выведение зависит от скорости доставки лекарственного вещества в выделительный орган с кровью и от активности собственно выделительных систем . Водорастворимые лекарственные вещества выводятся, как правило, через почки . Этот процесс определяется алгебраической суммой трёх основных процессов: гломерулярной (клубочковой) фильтрации, канальцевой секреции и реабсорбции. Скорость фильтрации прямо пропорциональна концентрации свободного лекарственного вещества в плазме крови ; канальцевая секреция реализуется насыщаемыми транспортными системами в нефроне и характерна для некоторых органических анионов , катионов и амфотерных соединений; реабсорбции могут подвергаться нейтральные формы лекарственных веществ. Полярные лекарственные вещества с молекулярной массой более 300 выводятся преимущественно с желчью и далее с калом: скорость выведения прямо пропорциональна потоку желчи и отношению концентраций лекарственного вещества в крови и желчи.

Остальные пути выделения менее интенсивны, но могут быть исследованы при изучении фармакокинетики. В частности, нередко анализируют содержание лекарственного вещества в слюне, поскольку концентрация в слюне для многих препаратов пропорциональна их концентрации в крови, исследуют также концентрацию лекарственных веществ в грудном молоке , что важно для оценки безопасности грудного вскармливания.

Литература

  • Соловьев В.H., Фирсов А. А., Филов В. А., Фармакокинетика , М., 1980.
  • Лакин К. M., Крылов Ю. Фармакокинетика. Биотрансформация лекарственных веществ , M., 1981.
  • Холодов Л.E., Яковлев В. П., Клиническая фармакокинетика . M., 1985.
  • Wagner J. G., Fundamentals of clinical pharma-cokinetics , Hamilton, 1975.

См. также

Ссылки

  • Общие вопросы клинической фармакологии. Глава 6. Основные вопросы фармакокинетики
  • Распределение лекарственных средств в организме. Биологические барьеры. Депонирование (Лекции, на русском)
  • Программное обеспечение для анализа данных фармакокинетических/фармакодинамических исследований
  • Проведение качественных исследований биоэквивалентности лекарственных средств. // Методические указания Министерства здравоохранения и социального развития РФ от 10.08.2004 г.
  • Лаборатория клинической (прикладной) фармакокинетики: стандартизация, аккредитация и лицензирование

Wikimedia Foundation . 2010 .

Смотреть что такое "Фармакокинетика" в других словарях:

    Фармакокинетика … Орфографический словарь-справочник

    - (от греч. pharmakon лекарство и kinetikos приводящий в движение), раздел фармакологии, изучающий скорости процессов поступления, распределения, биотрансформации и выведения лекарственных веществ из организма. Фармакокинетика токсических веществ… … Экологический словарь

    Сущ., кол во синонимов: 1 фармация (5) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    фармакокинетика - – раздел фармацевтической химии, задачей которого является изучение закономерностей всасывания, распределения и выделения лекарственных препаратов из организма … Краткий словарь биохимических терминов

    фармакокинетика - Раздел фармакологии, связанный с изучением концентрации и скорости прохождения лекарственного средства в организме Тематики биотехнологии EN pharmacokinetics … Справочник технического переводчика

    I Фармакокинетика (греч. pharmakon лекарство kinētikos относящийся к движению) раздел фармакологии, изучающий закономерности всасывания, распределения, метаболизма и выделения лекарственных средств. Исследование этих закономерностей основано на… … Медицинская энциклопедия

    - (фармако + греч. kinetikos относящийся к движению) раздел фармакологии, изучающий пути поступления, распределение и метаболизм лекарственных веществ в организме, а также их выведение … Большой медицинский словарь

    - (от греч. pharmakon лекарство и kinetikos приводящий в движение), изучает кинетич. закономерности процессов, происходящих с лек. ср вом в организме. Осн. фармакокинетич. процессы: всасывание, распределение, метаболизм и экскреция (выведение).… … Химическая энциклопедия

В современной фармакотерапии особенно большое значение придаётся изучению фармакокинетики лекарственных средств, включающей определение скорости и полноты всасывания препарата при разных путях введения, в том числе при пероральном применении, связывания с белками плазмы (при всех способах введения), начала действия, времени достижения максимальной концентрации в плазме крови, периода полувыведения (Т 1/2), времени полного выведения (после прекращения введения препарата), путей выведения и количества препарата (в процентах), выводимого разными путями (в неизменённом виде или в виде метаболитов). Определение этих параметров и их сопоставление с динамикой терапевтического эффекта позволяет установить оптимальные дозы и режим (частоту, длительность) применения препарата, оценить (по сопоставлению доз и эффективности) преимущества разных препаратов, осуществить выбор наиболее приемлемого из них, корригировать дозировки в случаях нарушений функций внутренних органов и др.

Изучение в полном объёме фармакокинетических параметров для каждого больного в повседневной практике почти неосуществимо в силу сложности исследования и, иногда, недостатка необходимой аппаратуры - хроматографов, масс-спектрометров и т. д. Проводятся эти исследования в основном в клинико-фармакологических лечебных учреждениях и в экспериментальных лабораториях. Однако знание имеющихся данных о фармакокинетических параметрах применяющихся лекарственных средств необходимо каждому современному врачу.

К фармакокинетическим исследованиям примыкает изучение метаболизма лекарственных средств. Попадая в организм, большинство лекарственных средств подвергается метаболическим превращениям (фрагментированию молекул, гидроксилированию, восстановлению, деметилированию и др.). Лишь отдельные лекарства выделяются из организма в неизменённом виде. Образующиеся метаболиты (а их количество у разных соединений составляет от единиц до десятков) могут быть активными, малоактивными, неактивными, а в некоторых случаях и токсичными. Нередко основной фармакологический и лечебный эффект определяется активным метаболизмом, т. е. действует, собственно, не применяемое лекарственное средство, а продукт его метаболического превращения. В этих случаях используемое лекарственное средство рассматривается как «пролекарство».

Первыми пролекарствами были давно известные «старые» препараты. Гексаметилентетрамин (уротропин) действует, высвобождая в организме (в кислотной среде) формальдегид. Фенилсалицилат (салол) метаболизирустся с образованием фенола и салициловой кислоты, а первый сульфаниламидный антибактериальный препарат пронтозил («красный» стрептоцид) - активного метаболита сульфаниламида («белого» стрептоцида), полностью заменившего в качестве лекарственного средства пролекарство.

Пролекарствами являются различные современные лекарственные средства. Применяемый для лечения язвенного колита салазосульфапиридин метаболизируется с образованием активных сульфаниламидного и салицилового компонентов. Имипрамин имеет активный метаболит дезипрамин, применяемый в качестве самостоятельного антидепрессанта. Действующим веществом ингибитора АПФ эналаприла является его метаболит эналаприлат. Блокатор рецепторов ангиотензина II лозартан образует активный метаболит, специфически связывающийся с АТ1-рецепторами, и т. д.

Метаболизм лекарственных средств осуществляется под влиянием различных ферментных систем организма. Особенно важную роль играют при этом микросомальные и другие ферменты печени, под действием которых происходит инактивирование (дезинтоксикация) лекарственных средств. При нарушениях функций печени её дезинтоксикационная способность может изменяться. Имеется ряд лекарственных средств, являющихся как «индукторами», так и «ингибиторами» ферментов печени, которые соответственно усиливают или подавляют метаболизм и дезинтоксикацию других лекарственных средств. К наиболее известным «индукторам» относятся барбитураты, а также дифенин, карбамазепин, рифампицин. Впервые «индукция» ферментов привлекла внимание в связи с развитием опасных кровотечений при применении барбитуратов одновременно с непрямыми (пероральными) антикоагулянтами (дикумарином и др.). Антикоагулянты назначали больным в дозах, необходимых для создания противосвёртывающего эффекта, но они были выше обычных, так как активность антикоагулянтов снижалась под влиянием барбитуратов. При отмене же последних и продолжении применения анти коагулянта в прежних дозах развивались тяжёлые геморрагические осложнения (вплоть до летальных исходов).

Сами антикоагулянты (производные кумарина), а также циметидин, изониазид, левомицетин, тетурам и ряд других лекарственных средств являются ингибиторами ферментов печени (в частности, усиливают действие пероральных гипогликемических препаратов, теофиллина, дифенина, β-адреноблокаторов и некоторых других лекарственных средств). Изучение влияния новых лекарственных средств на активность ферментов печени стало одним из важных элементов фармакокинетических исследований. Учёт этих особенностей играет важную роль при совместном применении (взаимодействии) разных лекарственных средств.

Всасывание (абсорбция) - есть преодоление барьеров, разделяющих место введения лекарства и кровяное русло.

Для каждого лекарственного вещества определяется специальный показатель – биодоступность . Она выражается в процентах и характеризует скорость и степень всасывания ЛС с места введения в системный кровоток и накопление в крови в терапевтической концентрации.

В фармакокинетике лекарственных препаратов выделяют четыре основных этапа.

Этап - всасывание.

В основе всасывания лежат следующие основные механизмы:

1. Пассивная диффузия молекул, которая идет в основном по градиенту концен­трации. Интенсивность и полнота всасывания прямо пропорциональны липофильности, то есть, чем больше липофильность, тем выше способность вещества всасываться.

2. Фильтрация через поры клеточных мембран. Этот механизм задействован только при всасывании низкомолекулярных соединений, размер которых не превышает размер клеточных пор (вода, многие катионы). Зависит от гидростатического давления.

3. Активный транспорт обычно осуществляется с помощью специальных транспортных систем, идет с затратой энергии, против градиента концентрации.

4. Пиноцитоз характерен лишь для высокомолекулярных соединений (полимеров, полипептидов). Происходит с образованием и прохождением везикул через клеточные мембраны.

Всасывание лекарственных веществ может осуществляться этими механиз­мами при различных путях введения (энтеральных и парентеральных), кроме внутривенного, при котором препарат сразу поступает в кровоток. Кроме того, перечисленные механизмы участвуют в распределении и выведении лекарств.

Этап - распределение.

После попадания лекарственного вещества в кровь, оно разносится по всему организму и распределяется в соответствии со своими физико-химическими и биологическими свойствами.

В организме есть определенные барьеры, регулирующие проникновение веществ в органы и ткани: гематоэнцефалический (ГЭБ), гематоплацентарный (ГПБ), гематоофтальмологический (ГОБ) барьеры.

3 этап - метаболизм (превращение). Существуют два основных пути метаболизма лекарственных веществ:

ü биотрансформация , происходит под дей­ствием ферментов - окисление, восстановление, гидролиз.

ü конъюгация , при которой происходит присоединение к молекуле вещества остатков других молекул, с образованием неактивного комплекса, легко выводимого из организма с мочой или калом.

Эти процессы влекут за собой инактивацию или разрушение лекарственных веществ (детоксикацию), образование менее активных соединений, гидрофильных и легко выводимых из организма.

В ряде случаев лекарственный препарат становится активным лишь после реакций метаболизма в организме, то есть он является пролекарством , превращающимся в лекарство только в организме.

Главная роль в биотрансформации принадлежит микросомальным ферментам печени.

4 этап - выведение (экскреция) . Лекарственные вещества через определенное время выводятся из организма в неизмененном виде или в виде метаболитов.

Гидрофильные вещества выделяются почками. Таким способом выделяется большинство ЛС.

Многие липофильные лекарственные вещества выводятся через печень в составе желчи, поступающей в кишечник. Выделившиеся в кишечник с желчью ЛС и их метаболиты могут выделиться с калом, повторно всосаться в кровь и снова через печень выделится с желчью в кишечник (энтерогепатическая циркуляция).

Лекарственные вещества могут выводиться через потовые и сальные железы (йод, бром, салицилаты). Летучие лекарственные вещества выделяются через легкие с выдыхаемым воздухом. Молочные железы выделяют с молоком различные соединения (снотворные, спирт, антибиотики, сульфаниламиды), что следует учитывать при назначении лекарственного средства кормящим женщинам.

Элиминация - процесс освобождения организма от лекарственного вещества в результате инактивации и выведения.

Общий клиренс ЛС (от англ. сlearance – очистка) – объем плазмы крови, очищаемый от ЛС за единицу времени (мл/мин) за счет выведения почками, печенью и другими путями.

Период полувыведения (Т 0,5) – время, в течение которого концентрация активного лекарствен­ного вещества в крови снижается в два раза.

Фармакодинамика

изучает локализацию, механизмы действия ЛС, а также изменения в деятельности органов и систем организма под влиянием лекарственного вещества, т.е. фармакологические эффекты.

Механизмы действия ЛС

Фармакологический эффект - воздействие лекарственного вещества на организм, вызывающее изменения в деятельности определенных органов, тканей и систем (усиление работы сердца, устранение спазма бронхов, понижение или повышение артериального давления и т.д.).

Способы, которыми лекарственные вещества вызывают фармакологические эффекты, определяются как механизмы действия лекарственных веществ.

Лекарственные вещества взаимодействуют со специфическими рецепторами клеточных мембран, через которые осуществляется регуляция деятельности органов и систем. Рецепторы – это активные участки макромолекул, с которыми специфически взаимодействуют медиаторы или гормоны.

Для характеристики связывания вещества с рецептором используется термин аффинитет.

Аффинитет определяется как способность вещества связываться с рецептором, в результате чего происходит образование комплекса «вещество-рецептор».

Лекарственные вещества, стимулирующие (возбуждающие) эти рецепторы и вызывающие такие эффекты, как и эндогенные вещества (медиаторы), получили название миметиков, стимуляторов или агонистов . Агонисты благодаря сходству с естественными медиаторами стимулируют рецепторы, но действуют более продолжительно в связи с их большей устойчивостью к разрушению.

Вещества, связывающиеся с рецепторами и препятствующие действию эндогенных веществ (нейромедиаторов, гормонов) называются блокаторами, ингибиторами или антагонистами.

Во многих случаях действие ЛС связано с их влияниями на ферментные системы или отдельные ферменты;

Иногда лекарственные средства угнетают транспорт ионов через клеточные мембраны или стабилизируют клеточные мембраны.

Ряд веществ влияют на метаболические процессы внутри клетки, а также проявляют другие механизмы действия.

Фармакологическая активность ЛС – способность вещества или комбинации нескольких веществ изменять состояние и функции живого организма.

Эффективность ЛС – характеристика степени положительного влияния ЛС на течение или продолжительность заболевания, предотвращение беременности, реабилитацию больных путем внутреннего или внешнего применения.

10. Фармакокинетика и фармакодинамика – определение, разделы. Основные показатели фармакокинетики.

Фармакокинетика - это раздел фармакологии о всасывании, распределении в организме, депонировании, метаболизме и выведении веществ.

Положения Фармакокинетики

I. Пути введения лекарственных веществ – энтеральные (пероральный, сублингвальный, ректальный), парентеральные без нарушения целостности кожных покровов (ингаляционный, вагинальный) и все виды инъекций (подкожные, внутримышечные, внутривенные, внутриартериальные, внутриполостные, с введением в спинно-мозговой канал и др.). II. Всасывание лекарственных средств при разных путях введения в основном происходит за счет пассивной диффузии через мембраны клеток, путем фильтрации через поры мембран и пиноцитоза). Факторы, влияющие на всасывание: растворимость вещества в воде и липидах, полярность молекулы, величина молекулы, рН среды, лекарственная форма; биодоступность (количество неизмененного вещества в плазме крови относительно исходной дозы препарата), учитывающая потери вещества при всасывании из желудочно-кишечного тракта и при первом прохождении через печеночный барьер (биодоступность при внутривенном введении принимают за 100 %). Распределение лекарственных веществ в организме в большинстве случаев оказывается неравномерным и зависит от состояния биологических барьеров – стенки капилляров, клеточных мембран, плацентарного и гематоэнцефалического барьеров. Трудности преодоления последнего обусловлены его структурными особенностями: эндотелий капилляров мозга не имеет пор, в них отсутствует пиноцитоз, они покрыты глиальными элементами, выполняющими функцию дополнительной липидной мембраны (в ткань мозга легко проникают липофильные молекулы). Распределение лекарственных веществ зависит также от сродства последних к разным тканям и от интенсивности тканевого кровоснабжения; обратимое связывание лекарственных веществ с плазменными (преимущественно альбумином) и тканевыми белками, нуклеопротеидами и фосфолипидами способствует их депонированию. III. Биотрансформация (превращение) лекарственных веществ в организме (метаболическая трансформация, конъюгация или метаболическая трансформация) – превращение лекарственных веществ путем окисления (с помощью микросомальных ферментов печени при участии НАДФ, О 2 и цитохрома Р-450), конъюгация – присоединение к лекарственному веществу или его метаболиту химических группировок и молекул эндогенных соединений (глюкуроновой и серной кислот, аминокислот, глютатиона, ацетильных и метильных групп); результат биотрансформации – образование более полярных и водорастворимых соединений, легко удаляющихся из организма. В процессе биотрансформации активность вещества обычно утрачивается, что лимитирует время его действия, а при заболеваниях печени или блокаде метаболизирующих ферментов продолжительность действия увеличивается (понятие об индукторах и ингибиторах микросомальных ферментов). IV. Выведение лекарственных веществ из организма в основном осуществляется с мочой и желчью: с мочой выводятся вещества путем фильтрации и активной кальциевой секреции; скорость их выведения зависит от скорости реабсорбции в канальцах за счет простой диффузии. Для процессов реабсорбции важное значение имеет рН мочи (в щелочной среде быстрее выводятся слабые кислоты, в кислой – слабые основания); скорость выведения почками характеризует почечный клиренс (показатель очищения определенного объема плазмы крови в единицу времени). При выделении с желчью лекарственные вещества покидают организм с экскрементами и могут подвергаться в кишечнике повторному всасыванию (кишечнопеченочная циркуляция). В удалении лекарственных веществ принимают участие и другие железы, включая молочные в период лактации (возможность попадания в организм грудного ребенка лекарств); одним из принятых фармакокинетических параметров является период полувыведения вещества (период полужизни Т1/2), отражающий время, в течение которого содержание вещества в плазме снижается на 50 %.

Основные показатели фармакокинетики

лекарственных препаратов

– Константа скорости абсорбции(Ка), характеризующая скорость их поступле­ния в организм.

– Константа скорости элиминации (Кel), характеризующая скорость их био­трансформации в организме.

– Константа скорости экскреции(Кex), характеризующая скорость их выведе­ния из организма (через легкие, кожу, пищеварительный и мочевой тракт).

– Период полуабсорбции (Т 1/2 , a) как время, необходимое для всасывания их поло­винной дозы из места введения в кровь (Т 1/2 , a = 0,693/Ка).

– Период полураспределения (Т 1/2 , a) как время, за которое их концентрация в крови достигает 50 % от равновесной между кровью и тканями.

– Период полувыведения(Т 1/2) как время, за которое их концентрация в крови уменьшается наполовину (Т 1/2 = 0,693/Кel).

– Кажущаяся начальная концентрация (С 0), которая была бы достигнута в плаз­ме крови при их внутривенном введении и мгновенном распределении в орга­нах и тканях.

– Равновесная концентрация (Сss), устанавливаемая в плазме (сыворотке) крови при их поступлении в организм с постоянной скоростью (при прерывистом введении (приеме) через одинаковые промежутки времени в одинаковых до­зах выделяют максимальную (Сss max) и минимальную (Сss min) равновесные концентрации).

– Объем распределения (Vd) как условный объем жидкости, в котором необхо­димо растворить поступившую в организм их дозу (D) для получения концен­трации, равная кажущейся начальной (С0).

– Общий (Clt), почечный (Clr) и внепочечный (Cler) клиренсы, характеризую­щие скорость освобождения от них организма и, соответственно, выведение их с мочой и другими путями (прежде всего с желчью) (Clt = Clr + Cler).

– Площадь под кривой «концентрация-время» (AUC), связанная с их другими фа­рмакокинетическими характеристиками (объемом распределения, общим клиренсом), при их линейной кинетике в организме величина AUC пропор­циональна дозе, попавшей в системный кровоток.

– Абсолютная биодоступность (f) как часть дозы, достигшая системного крово­тока после внесосудистого введения (%).

Показателем элиминации лекарственного препарата является клиренс (мл/мин). Выделяют общий, почечный и печеночный клиренс. Общий клиренс есть сумма по­чечного и печеночного клиренсов и определяется как объем плазмы крови, который очищается от лекарственного препарата за единицу времени. Клиренс используется для расчета дозы лекарственного препарата, необходимой для поддержания его рав­новесной концентрации (поддерживающей дозы) в крови. Равновесная концентрация устанавливается, когда количество абсорбирующегося и количество вводимого пре­парата равны друг другу.

В изучении фармакокинетики лекарственных препаратов важное место занимает математическое моделирование.

Существует много математических методов и моделей, от простейших одномер­ных до разного уровня сложности многомерных.

Использование математического моделирования позволяет в деталях с выведе­нием характерных констант исследовать фармакокинетику лекарственных препа­ратов, как по времени, так и пространству (по органам и тканям).

Фармакодинамика - раздел, изучающий биологические эффекты веществ, их локализацию и механизм действия.

Основные Положения Фармакодинамики

I. Виды фармакологического действия лекарств (местное, резорбтивное, прямое и косвенное, рефлекторное, обратимое, необратимое, преимущественное, избирательное, специфическое действие). Во всех случаях лекарственное вещество взаимодействует с определенными биохимическими субстратами; активные группировки макромолекулярных субстратов, взаимодействующих с веществами, получили название рецепторов, а рецепторы, взаимодействие с которыми обеспечивает основное действие вещества, называются специфическими. Сродство вещества к рецептору, приводящее к образованию с ним комплекса, обозначается термином «аффинитет»; способность вещества при взаимодействии с рецептором вызывать тот или иной эффект называется внутренней активностью; вещество, при взаимодействии с рецептором вызывающее биологический эффект, называется агонистом (они и есть внутренне активные); агонизм может быть полным (вещество вызывает максимальный эффект) и частичным (парциальным). Вещества, при взаимодействии с рецептором не вызывающие эффекта, но устраняющие эффект агониста, называются антагонистами. II. Типовые механизмы действия лекарственных веществ (миметическое, литическое, аллостерическое, изменение проницаемости мембран, освобождение метаболита от связи с белками и др.). III. Фармакологические эффекты – прямые и косвенные. IV. Виды фармакотерапевтического действия (этиотропное, патогенетическое, симптоматическое, главное и побочное).

Механизмы действия лекарственных средств.

Подавляющее большинство лекарственных средств оказывает лечебное действие путем изменения деятельности физиологических систем клеток, которые вырабатывались у организма в процессе эволюции. Под влиянием лекарственного вещества в организме, как правило, не возникает новый тип деятельности клеток, лишь изменяется скорость протекания различных естественных процессов. Торможение или возбуждение физиологических процессов приводит к снижению или усилению соответствующих функций тканей организма.

Лекарственные средства могут действовать на специфические рецепторы, ферменты, мембраны клеток или прямо взаимодействовать с веществами клеток. Подробно механизмы действия лекарственных веществ изучаются в курсе общей или экспериментальной фармакологии. Ниже мы приводим лишь некоторые примеры основных механизмов действия лекарственных средств.

Действие на специфические рецепторы . Рецепторы - макромолекулярные структуры, избирательно чувствительные к определенным химическим соединениям. Взаимодействие химических веществ с рецептором приводит к возникновению биохимических и физиологических изменений в организме, которые выражаются в том или ином клиническом эффекте.

Препараты, прямо возбуждающие или повышающие функциональную активность рецепторов, называют агонистами, а вещества, препятствующие действию специфических агонистов, - антагонистами. Антагонизм может быть конкурентным и неконкурентным. В первом случае лекарственное вещество конкурирует с естественным регулятором (медиатором) за места связывания в специфических рецепторах. Блокада рецептора, вызванная конкурентным антагонистом, может быть устранена большими дозами вещества-агониста или естественного медиатора.

Разнообразные рецепторы разделяют по чувствительности к естественным медиаторам и их антагонистам. Например, чувствительные к ацетилхолину рецепторы называют холинэргическими, чувствительные к адреналину - адренергическими. По чувствительности к мускарину и никотину холинергические рецепторы подразделяются на мускариночувствительные (м-холинорецепторы) и никотиночувствительные (н-холинорецепторы). Н-холинорецепторы неоднородны. Установлено, что их отличие заключается в чувствительности к различным веществам. Выделяют н-холинорецепторы, находящиеся в ганглиях автономной нервной системы, и н-холинорецепторы поперечнополосатой мускулатуры. Известны различные подтипы адренергических рецепторов, обозначаемые греческими буквами α 1 ,α 2 , β 1, β 2 .

Выделяют также H 1 - и Н 2 -гистаминовые, допаминовые, серотониновые, опиоидные и другие рецепторы.

Влияние на активность ферментов. Некоторые лекарственные средства повышают или угнетают активность специфических ферментов. Например, физостигмин и неостигмин снижают активность холинэстеразы, разрушающей ацетилхолин, и дают эффекты, характерные для возбуждения парасимпатической нервной системы. Ингибиторы моноаминоксидазы (ипразид, ниаламид), препятствующие разрушению адреналина, усиливают активность симпатической нервной системы. Фенобарбитал и зиксорин, повышая активность глюкуронилтрансферазы печени, снижают уровень билирубина в крови.

Физико-химическое действие на мембраны клеток . Деятельность клеток нервной и мышечной систем зависит от потоков ионов, определяющих трансмембранный электрический потенциал. Некоторые лекарственные средства изменяют транспорт ионов.

Так действуют антиаритмические, противосудорожные препараты, средства для общего наркоза.

Прямое химическое взаимодействие. Лекарственные средства могут непосредственно взаимодействовать с небольшими молекулами или ионами внутри клеток. Например, этилендиаминтетрауксусная кислота (ЭДТА) прочно связывает ионы свинца. Принцип прямого химического взаимодействия лежит в основе применения многих антидотов при отравлениях химическими веществами. Другим примером может служить нейтрализация соляной кислоты антацидными средствами.

Связь "доза-эффект"

Является важным фармакодинамическим показателем. Обычно этот показатель представляет собой не простое арифметическое отношение и может графически выражаться по-разному: линейно, изогнутой вверх либо вниз кривой, сигмоидальной линией.

Каждое лекарство обладает рядом желательных и нежелательных свойств. Чаще всего при увеличении дозы лекарства до определенного предела желаемый эффект возрастает, но при этом могут возникать нежелательные эффекты. Лекарство может иметь не одну, а несколько кривых отношения "доза-эффект" для его различных сторон действия. Отношение доз лекарства, при которых вызывается нежелательный или желаемый эффект, используют для характеристики границы безопасности или терапевтического индекса препарата. Терапевтический индекс препарата можно рассчитывать по соотношению его концентраций в плазме крови, вызывающих нежелательные (побочные) эффекты, и концентраций, оказывающих терапевтическое действие, что более точно может характеризовать соотношение эффективности и риска применения данного лекарства.

Методы для изучения фармакодинамики должны обладать рядом важных свойств:

а) высокой чувствительностью - способностью выявлять большую часть тех отклонений от исходного состояния, на которое пытаются воздействовать, а также оценивать положительные изменения в организме.

б) высокой специфичностью - способностью относительно редко давать "ложноположительные" результаты.

в) высокой воспроизводимостью - способностью данным методом стабильно отображать характеристики состояния больных при повторных исследованиях в одинаковых условиях у одних и тех же больных при отсутствии какой-либо динамики в состоянии этих больных по другим клиническим данным.