Заболевания, эндокринологи. МРТ
Поиск по сайту

Главные проводящие пути спинного мозга. Нисходящие проводящие пути спинного мозга

Проводящие пути ЦНС построены из функционально однородных групп нервных волокон; они представляют собой внутренние связи между ядрами и корковыми центрами, расположенными в разных частях и отделах мозга, и служат для их функционального объединения (интеграции). Проводящие пути, как правило, проходят в белом веществе спинного и головного мозга, но могут локализоваться и в покрышке ствола мозга, где чётких границ между белым и серым веществом нет.

Основным проводящим звеном в системе передачи информации от одних центров мозга к другим являются нервные волокна – аксоны нейронов, передающие информацию в форме нервного импульса в строго определённом направлении, а именно от тела клетки. Среди проводящих путей в зависимости от их строения и функционального значения выделяют различные группы нервных волокон: волокна, пучки, тракты, лучистости, спайки (комиссуры).

Проекционные пути состоят из нейронов и их волокон, обеспечивающих связи между спинным и головным мозгом. Проекционные пути соединяют также ядра ствола с базальными ядрами и корой больших полушарий, а также ядра ствола с корой и ядрами мозжечка. Проекционные пути могут быть восходящими и нисходящими.

Восходящие (сенсорные, чувствительные, афферентные) проекционные пути проводят нервные импульсы от экстеро-, проприо- и интерорецепторов (чувствительных нервных окончаний в коже, органах опорно-двигательного аппарата, внутренних органах), а также от органов чувств в восходящем направлении к головному мозгу, преимущественно к коре мозга, где в основном заканчиваются на уровне IV цитоархитектонического слоя.

Отличительной особенностью восходящих путей является многоэтапная, последовательная передача сенсорной информации в кору головного мозга через ряд промежуточных нервных центров.

Помимо коры головного мозга сенсорная информация направляется также в мозжечок, в средний мозг и в ретикулярную формацию.

Нисходящие (эфферентные или центробежные) проекционные пути проводят нервные импульсы от коры больших полушарий, где берут начало от пирамидных нейронов V цитоархитектонического слоя, к базальным и стволовым ядрам головного мозга и далее к моторным ядрам спинного мозга и ствола мозга.

Они передают информацию, связанную с программированием движений организма в конкретных ситуациях, поэтому являются двигательными проводящими путями.

Общей особенностью нисходящих двигательных путей является то, что они обязательно проходят через внутреннюю капсулу – прослойку белого вещества в полушариях большого мозга, отделяющую таламус от базальных ядер. В стволе мозга большая часть нисходящих путей, направляющихся в спинной мозг и мозжечок, идут в его основании.

35. Пирамидная и экстрапирамидные системы

Пирамидная система представляет собой совокупность двигательных центров коры мозга, моторных центров черепных нервов, залегающих в стволе мозга, и моторных центров в передних рогах спинного мозга, а также эфферентных проекционных нервных волокон, связывающих их между собой.

Пирамидные пути обеспечивают проведение импульсов в процессе сознательной регуляции движений.

Пирамидные пути формируются из гигантских пирамидных нейронов (клеток Беца), а также крупных пирамидных нейронов, локализованных в V слое коры больших полушарий. Примерно 40% волокон начинается от пирамидных нейронов в предцентральной извилине, где находится корковый центр двигательного анализатора; около 20% - от постцентральной извилины, а остальные 40% - от задних участков верхней и средней дольных извилин, и от надкраевой извилины нижней теменной дольки, в которой расположен центр праксии, контролирующий сложные координированные целенаправленные движения.

Пирамидные пути подразделяют на корково-спинномозговой и корково-ядерный. Их общей особенностью является то, что они, начинаясь в коре правого и левого полушарий, переходят на противоположную сторону мозга (т.е. перекрещиваются) и в конечном итоге осуществляют регуляцию движений контрлатеральной полвины тела.

Экстрапирамидная система объединяет филогенетически более древние механизмы управления движениями человека, чем пирамидная система. Она осуществляет преимущественно непроизвольную, автоматическую регуляцию сложных двигательных проявлений эмоций. Отличительной особенностью экстрапирамидной системы является многоэтапная, с множеством переключений, передача нервных влияний от различных отделов головного мозга к исполнительным центрам – моторным ядрам спинного мозга и черепных нервов.

По экстрапирамидным путям происходит передача двигательных команд при защитных двигательных рефлексах, протекающих бессознательно. Например, благодаря экстрапирамидным путям передаётся информация при восстановлении вертикального положения тела в результате потери равновесия (вестибулярные рефлексы) или при двигательных реакциях на внезапное световое или звуковое воздействие (защитные рефлексы, замыкающиеся в крыше среднего мозга) и т.д.

Экстрапирамидную систему образуют ядерные центры полушарий (базальные ядра: хвостатое и чечевицеобразное), промежуточного мозга (медиальные ядра таламуса, субталамическое ядро) и ствола мозга (красное ядро, черное вещество), а также проводящие пути, связывающие её с корой больших полушарий, с мозжечком, с ретикулярной формацией и, наконец, с исполнительными центрами, лежащими в моторных ядрах черепных нервов и в передних рогах спинного мозга.

Существует также и несколько расширенная трактовка, когда к Э.С. причисляют мозжечок, ядра четверохолмия среднего мозга, ядра ретикулярной формации и т.д.

Корковые пути берут начало от предцентральной извилины, а также других отделов коры мозга; эти пути проецируют влияние коры на базальные ядра. Сами базальные ядра тесно связаны между собой многочисленными внутренними связями, а также с ядрами таламуса и с красным ядром среднего мозга. Формирующиеся здесь двигательные команды передаются на исполнительные двигательные центры спинного мозга преимущественно двумя путями: через красноядерно-спинномозговой (руброспинальный) тракт и через ядра ретикулярной формации (ретикулоспинальный тракт). Также через красное ядро осуществляется передача влияний мозжечка на работу спинномозговых моторных центров.

№ п/п Название пути Характеристика пути
Нисходящие Восходящие
Передние канатики
Передний корково-спинномозговой путь, tractus corticospinalis ventralis (anterior) Эфферентный (пирамидный)
Покрышечно-спинномозговой путь, tractus tectospinalis
Преддверно-спинномозговой путь, tractus vestibulospinalis Эфферентный (экстрапирамидный)
Ретикулярно-спинномозговой путь, tractus reticulospinalis Эфферентный (экстрапирамидный)
Задний продольный пучок, fasciculus longitudinalis dorsalis (posterior) Входит в структуру эфферентных путей
Передний спинно-таламический путь, tractus spinоthalamicus ventralis (anterior) Афферентный
Задние канатики
Тонкий пучок, fasciculus gracilis (пучок Голля) Афферентный
Клиновидный пучок, fasciculus cuneatus (пучок Бурдаха) Афферентный
Боковые канатики
Боковой спинно-таламический путь, tractus spinothalamicus lateralis Афферентный
Передний спинно-мозжечковый путь, tractus spinocerebеllaris ventralis (anterior), пучок Говерса Афферентный
Задний спинно-мозжечковый путь, tractus spinocerebellaris ventralis (posterior), пучок Флексига Афферентный
Латеральный корково-спинномозговой путь, tractus corticospinalis lateralis Эфферентный (пирамидный)
Красноядерно-спинномозговой путь, tractus rubrospinalis Эфферентный (экстрапирамидный)

Рис. 6. Проводящие пути спинного мозга: 1 – тонкий пучок (пучок Голля); 2 – клиновидный пучок (пучок Бурдаха); 3 – задний спинно-мозжечковый путь (пучок Флексига); 4 – латеральный корково-спинномозговой путь; 5 – красноядерно-спинномозговой путь; 6 – боковой спинно-таламический путь; 7 – задний предверно-спинномозговой путь; 8 – передний спинно-мозжечковый путь (пучок Говерса); 9 – ретикулярно-спинномозговой путь; 10 – преддверно-спинномозговой путь; 11 – передний спинно-таламический путь; 12 – передний корково-спинномозговой путь; 13 – покрышечно-спинномозговой путь; 14 – задний продольный пучок.


В белом веществе СМ на уровне шейных сегментов между передними и задними столбами, а на уровне верхнегрудных сегментов между боковыми и задними столбами располагается ретикулярная формация, formatiо reticularis, состоящая из редко расположенных нейронов с большим числом анастомозирующих отростков.

К структурам СМ относятся корешки (передние и задние). В каждом сегменте имеется по одной паре передних и задних корешков (рис. 1). Передний корешок, radix anterior, представляет совокупность аксонов двигательных нейронов, тела которых расположены в передних столбах СМ. На уровне сегментов С 8 – L 1–2 и S 2–4 в состав передних корешков входят также аксоны вегетативных нейронов, тела которых локализуются в боковых столбах.

Каждый задний корешок, radix posterior, представлен совокупностью аксонов (центральных отростков) псевдоуниполярных клеток, тела которых находятся в спинномозговых ганглиях, ganglia spinales. Ганглии располагаются у места соединения заднего корешка с передним. В пределах межпозвоночного отверстия нервные волокна передних корешков СМ начинают располагаться вместе с периферическими отростками псевдоуниполярных клеток спинномозговых узлов. Совокупность этих двух видов волокон образует спинномозговой нерв, nervus spinalis. Число пар спинномозговых нервов соответствует числу сегментов СМ, т. е. их 31 пара – 8 пар шейных спинномозговых нервов, 12 – грудных, 5 – поясничных, 5 – крестцовых и 1-3 –копчиковых. Их протяжённость равна длине межпозвоночных отверстий, в которых они пролегают.

Корешки поясничных, крестцовых и копчиковых сегментов, прежде чем достичь межпозвоночных отверстий, проходят некоторое расстояние в пределах позвоночного, а затем крестцового каналов. Совокупность этих корешков формирует конский хвост, cauda equina, внутри которого располагаются мозговой конус, conus medullaris, и терминальная нить, filum terminale.

Оболочки спинного мозга. СМ покрыт тремя оболочками, meninges, (рис. 7). Наружная – твёрдая мозговая оболочка, dura mater spinalis, под ней располагается паутинная оболочка, arachnoidea spinalis, и внутренняя – мягкая (сосудистая) оболочка, pia mater spinalis.

Твёрдая мозговая оболочка с внутренней поверхности покрыта эндотелием и соединена многочисленными перемычками с паутинной оболочкой. Между этими оболочками располагается субдуральная щелевидная полость, cavum subdurale, заполненная спинномозговой жидкостью и соединительнотканными волокнами.

Между твердой мозговой оболочкой и надкостницей позвонков находится эпидуральное пространство, cavum epidurale. В нём размещается жировая клетчатка и внутреннее позвоночное венозное сплетение.

Рис. 7. Оболочки спинного мозга: 1 – dura mater spinalis; 2 – cavitas epiduralis; 3 – arachnoidea mater spinalis; 4 – cavitas subarachnoidalis; 5 – pia mater spinalis; 6 – ganglion spinale; 7 – ligamentum denticulatum


Паутинная оболочка покрыта эндотелием с обеих сторон. Многочисленными перемычками она соединяется с сосудистой и твёрдой мозговыми оболочками. От паутинной оболочки во фронтальной плоскости отходят зубчатые связки, ligamenta denticulatа. В области межпозвоночных отверстий эти связки срастаются с обеими оболочками. В пределах конского хвоста перемычки и зубчатые связки отсутствуют.

Сосудистая оболочка прилегает непосредственно к СМ, заходит в переднюю срединную щель и во все его борозды. Снаружи она покрыта эндотелием. Между сосудистой и паутинной оболочками находится подпаутинное пространство, cavitas subarachnoidalis, которое несколько расширено вокруг конского хвоста, что получило название концевой цистерны, cisterna terminalis. Подпаутинное пространство содержит 120–140 мл спинномозговой жидкости.

Оболочки СМ и межоболочечные пространства со спинномозговой жидкостью обеспечивают механическую защиту органа, а сосудистая оболочка выполняет также трофическую функцию в отношении СМ.

Функции спинного мозга заключаются в проведении нервных импульсов и обеспечении безусловно-рефлекторной деятельности мускулатуры туловища и конечностей.

ГОЛОВНОЙ МОЗГ

CEREBRUM, греч. ENCEPHALON

Головной мозг (ГМ) с окружающими его оболочками находится в полости мозгового отдела черепа. Масса ГМ варьирует у взрослого человека от 1100 до 2000 г, в среднем 1320 г: у мужчин – 1394 г, у женщин – 1245 г. После 60 лет масса ГМ несколько уменьшается. В структуре ГМ (рис. 8) различают: конечный мозг, telencephalon; промежуточный – diencephalon; средний – mesencephalon; задний – metencephalon; продолговатый – medulla oblongata, греч. myelencephalon.

Продолговатый мозг

Мyelencephalon

Продолговатый мозг располагается между спинным и задним мозгом. Его длина в среднем равна 25 мм. Границу со СМ проводят по линии выхода 1-й пары спинномозговых нервов или по нижнему краю большого затылочного отверстия. Граница с задним мозгом проходит с вентральной поверхности по нижнему краю моста (рис. 9 а), а на дорзальной – по мозговым полоскам, stria medullaris IV желудочка (рис. 9 б). По форме продолговатый мозг напоминает усечённый конус или луковицу, что в прошлом послужило основанием назвать его луковицей мозга, bulbus cerebri (BNA), поэтому клинические симптомы, связанные с поражением ядерных структур продолговатого мозга, получили название бульбарных расстройств.


Рис. 9. Продолговатый мозг: а –вентральная, б –дорзальная поверхности; 1 – oliva; 2 – pyramis; 3 – sulcus anterolateralis; 4 – fissura mediana anterior; 5 – decussatio pyramidum; 6 – funiculus lateralis; 7 – tuberculum gracile; 8 – tuberculum cuneatum; 9 – fasciculus cuneatus; 10 – fasciculus gracilis; 11 – sulcus medianus posterior; 12 – pons; 13 – sulcus posterolateralis; 14 – pedunculus cerebellaris inferior; 15 – stria medullaris

Рис. 10. Задний мозг: 1 – pons; 2 – cerebellum; 3 – medulla oblongata; 4 – sulcus basillaris; 5 – pedunculus cerebellaris medius; 6 – pedunculus cerebri


В продолговатом мозге различают переднюю, заднюю и две боковые поверхности, а также переднюю срединную щель, fissura mediana ventralis (anterior) и пять борозд: непарная – задняя срединная борозда, sulcus medianus dorsalis (posterior), и парные – передние и задние боковые борозды, sulci ventrolaterales (anterolaterales), sulci dorsolaterales (posterolaterales), которые являются продолжением борозд СМ.

На передней поверхности продолговатого мозга между передней срединной щелью и передними боковыми бороздами располагаются пирамиды, pyramis, большинство волокон которых в нижнем отделе ПМ переходят на противоположную сторону и входят в состав боковых канатиков СМ. Неперекрещенные волокна вступают в передние канатики СМ. Указанный перекрест волокон получил название перекрест пирамид, decussatio pyramidum. В пирамидах проходят двигательные (пирамидные) пути.

Латеральнее пирамид располагается по оливе, oliva, внутри которых локализуются ядра оливы, nuclei olivarii. Эти ядра имеют множественные связи с мозжечком и СМ, что обусловливает их участие в поддержании равновесия. Между пирамидой и оливой из переднелатеральной борозды выходят корешки XII пары черепных нервов, nervi hypoglossi.

На задней поверхности продолговатого мозга между задней срединной и задними боковыми бороздами находятся задние канатики, идущие из СМ. Каждый канатик посредством промежуточной борозды, sulcus intermedius, делится на два пучка – тонкий, лежащий медиально, и клиновидный, расположенный латерально. Сверху пучки заканчиваются с обеих сторон одноименными бугорками – бугорки тонкого и клиновидного ядер, tubercula nucleorum gracile et cuneatum. Дорзальнее оливы из заднелатеральной борозды выходят черепные нервы: языкоглоточный, блуждающий и добавочный (IX, X и XI пары). Часть волокон, отходящих от нейронов тонкого и клиновидного ядер, образуют нижние мозжечковые ножки, соединяющие мозжечок с продолговатым мозгом. Эти ножки снизу и латерально ограничивают нижний треугольник ромбовидной ямки, в пределах которой находятся ядра IX–XII пар черепных нервов. Другая часть волокон формирует медиальную петлю, lemniscus medialis. Волокна правой и левой медиальных петель переходят на противоположную сторону, образуя перекрест медиальных петель, decussatio lemniscorum medialium. Над данным перекрестом располагается задний продольный пучок, fasciculus longitudinalis dorsalis (posterior).

Волокна тонкого и клиновидного путей, а также медиальной петли являются структурами анализатора проприоцептивной чувствительности. К путям проприоцептивной чувствительности относятся и пути в нижних ножках мозжечка.

В пределах продолговатого мозга располагается часть ретикулярной формации, в которой локализуются жизненно важные центры: сердечно-сосудистый (кровообращения) и дыхания.

Функции продолговатого мозга . Благодаря расположению в продолговатом мозге ядер IX–XII пар черепных нервов и ретикулярной формации, он обеспечивает реализацию следующих видов безусловных жизненно важных рефлексов:

1) защитных, связанных с кашлем, миганием, чиханием, рвотой, слезотечением;

2) пищевых, связанных с сосанием, глотанием, сокоотделением в пищеварительном тракте;

3) сердечно– сосудистых и дыхательных, обеспечивающих регуляцию работы сердца, сосудов и дыхательной мускулатуры;

4) установочных,связанных с перераспределением тонуса поперечно-полосатой мускулатуры;

5) эмоциональных, обеспечивающих отражение через мимику психического состояния человека.

Задний мозг

Metencephalon

Задний мозг каудально граничит с продолговатым, а краниально – со средним. Граница со средним мозгом проходит на вентральной поверхности по переднему краю моста, а на дорзальной – по нижним холмикам и их ручкам, о границе с продолговатым мозгом см. выше. Задний мозг включает мост и мозжечок (рис. 10). Продолговатый и задний мозг образуются из ромбовидного мозга, полостью которого является IV желудочек, ventriculus quartus.

Мост, pons (варолиев мост). Он прилегает к скату затылочной кости. На вентральной поверхности моста посередине располагается основная борозда, sulcus basillaris, в которой находится одноимённая артерия. На фронтальном разрезе моста (рис. 11) показано его внутреннее строение.

В центральной части находится мощный пучок поперечно расположенных волокон – трапециевидное тело, corpus trapezoideum. Между его волокнами находятся парные вентральные и дорзальные ядра, nuclei trapezoidei ventrales et dorsales. Волокна и ядра трапециевидного тела относятся к проводящим путям слухового анализатора.

Трапециевидное тело делит мост на вентральную (базилярную) часть, pars ventralis (basillaris) pontis, и дорзальную часть (покрышку) моста, pars dorsalis (tegmentum) pontis. В покрышке моста над трапециевидным телом справа и слева располагаются волокна медиальных петель, lemniscus medialis а латерально и выше их – латеральных петель, lemniscus lateralis. Ближе к середине над трапециевидным телом располагаются структуры ретикулярной формации, а ещё выше – задний продольный пучок, fasciculus longitudinalis dorsalis.



Рис. 11. Поперечный разрез моста: 1 – vellum medullare superius; 2 – pedunculus cerebellaris superior; 3 – corpus trapezoideum; 4 – sulcus basillaris; 5 – fasciculus longitudinalis dorsalis; 6 – lemniscus medialis; 7 – lemniscus lateralis; 8 – fibrae pontis longitudinales; 9 – n. trigeminus; 10 – n. abducens; 11 – n. facialis; 12 – ventriculus quartus


Рис. 12. Мозжечок, а – вид сверху: 1 – hemispheria cerebelli; 2 – vermis; 3 – fissura cerebelli; 4 – fissura horizontalis; 5 – folia cerebelli; б – горизонтальный разрез мозжечка: 1 – nucleus dentatus; 2 – nucleus emboliformis; 3 – nucleus globusus; 4 – nucleus fastigii; 5 – cortex cerebellaris; 6 – arbor vitae cerebelli; 7 – vermis


Кроме указанных структур в покрышке моста в границах верхнего треугольника ромбовидной ямки локализуются ядра 4 пар черепных нервов – V, VI, VII и VIII (nn. trigeminus, abducens, facialis et vestibulocochlearis). В базилярной части моста располагаются собственные ядра моста, nuclei pontis. Отростки нейронов этих ядер образуют пучки поперечных волокон моста, fibrae pontis transversae, которые входят в мозжечок, формируя его средние ножки. Границей между этими ножками и мостом является место прохождения корешка, n. trigeminus. В базилярной части моста проходят эфферентные пирамидные и экстрапирамидные пути.

Мозжечок (малый мозг), cerebellum , располагается над продолговатым мозгом и мостом, занимая полость задней черепной ямки. Сверху он граничит с затылочными долями полушарий большого мозга, от которого отделяется поперечной щелью большого мозга, fissura transversa cerebri.

В мозжечке различают верхнюю и нижнюю поверхности, разделенные горизонтальной щелью, fissura horizontalis. На нижней поверхности имеется углубление – долинка мозжечка, vallecula cerebelli, к которой прилегает продолговатый мозг.

Мозжечок состоит из 2 полушарий, hemispheria cerebelli, соединённых непарным образованием – червём, vermis cerebelli (рис. 12 а). Поверхность полушарий мозжечка и червя изрезана множеством поперечных щелей, между которыми находятся листки (извилины) мозжечка, folia cerebelli. Более глубокие борозды полушарий и червя отделяют друг от друга их дольки. Наиболее старой долькой полушарий, прилегающей к вентральной поверхности средних ножек мозжечка, является клочок, flocculus, который посредством своих ножек, pedunculi flocculi, соединяется с долькой червя, которая называется узелком, nodulus. Между узелком и ножками клочка располагаются дольки полушарий – миндалина мозжечка, tonsila cerebelli.

В полушариях и в черве мозжечка снаружи размещается серое вещество – cortex cerebelli, а под ним – белое вещество, в котором локализуются парные ядра мозжечка (рис. 12 б). В центре полушарий находится самое крупное зубчатое ядро, nucleus dentatus. На горизонтальном срезе полушарий оно имеет вид тонкой извилистой полоски, которая в медиальном направлении не замкнута. Это место называется воротами зубчатого ядра, hilum nuclei dentati, через которые входят волокна верхних мозжечковых ножек. В медиальном направлении от зубчатого ядра располагаются пробковидное и шаровидное ядра, nuclei emboliformis et globusus, а самое медиальное в черве над четвёртым желудочком – ядро шатра, nucleus fastigii.

На разрезах мозжечка и особенно на сагиттальном срединном разрезе червя его серое и белое вещество создают вид листка туи, вечнозелёного «живого» дерева, что побудило анатомов древности дать рисунку мифическое название – древо жизни, arbor vitae.


Мозжечок соединяется с другими отделами головного мозга посредством трёх пар ножек – верхних, нижних и средних (рис. 13). Верхние мозжечковые ножки, pedunculi cerebellaris superiores, соединяют мозжечок со средним мозгом. В них проходят проводящие пути проприоцептивной чувствительности, tractus spinocerebellaris anterior и волокна, связанные с экстрапирамидным путём, tractus rubrospinalis.

Нижние мозжечковые ножки, pedunculi cerebellares inferiores, соединяют мозжечок с продолговатым мозгом. В них проходят проводящие пути проприоцептивной чувствительности, tractus spinocerebellaris posterior, и волокна, связанные с экстрапирамидным путём, tractus vestibulospinalis, а также fibrae arcuatae externi (tr. bulbothalamicus, неперекрещенная часть).

Средние ножки мозжечка, pedunculi cerebellares medii – самые мощные ножки. Их волокна, под названием «мостомозжечковые пути», соединяют ядра моста с корой мозжечка и входят в состав корково-мостовых путей.

С позиции филогенеза в мозжечке морфологически и функционально выделяют три части.

1. Древняя, archicerebellum, – это клочок и ядро шатра. Они обеспечивают пространственную ориентацию тела и его частей, а также равновесие тела.

2. Старая, paleocerebellum, – червь, пробковидное и шаровидное ядра. Они обеспечивают регуляцию тонуса мышц и координацию движений туловища.

3. Новая, neocerebellum, – зубчатое ядро и полушария в целом. Данная часть мозжечка обеспечивает координацию произвольных движений конечностей.

Функции заднего мозга. Благодаря расположению в заднем мозге ядер V – VIII пар черепных нервов, ретикулярной формации и ядер мозжечка, он выполняет следующие функции.

1. Регуляция мышечного тонуса и обеспечение координации движений частей тела человека, делающей их плавными, точными, соразмерными.

2. Согласование быстрых (фазных) и медленных (тонических) компонентов двигательных актов, обеспечивающее равновесие тела и сохранение позы.

3. Поддержание стабильности ряда вегетативных функций, связанных с константами крови, работой пищеварительной системы, регуляцией сосудистого тонуса и обменных процессов.



Рис.13. Мозжечок, вид сбоку: 1 – pedunculus cerebri; 2 – lemniscus medialis; 3 – lemniscus lateralis; 4 – pons; 5 – pedunculus cerebellaris superior; 6 – pedunculus cerebellaris inferior



Рис. 14. Ромбовидная ямка. 1 – obex; 2 – recessus lateralis; 3 – sulcus medianus; 4 – eminentia medialis; 5 – sulcus limitans; 6 – colluculus facialis; 7 – trigonum nervi hypoglossi; 8 – trigonum nervi vagi; 9 – stria medullaris; 10 – area vestibularis; 11, 12, 13 – pedunculi cerebellares superior, medius et inferior


Похожая информация.


Нервная клетка имеет большое количество отростков. Отростки, удаленные от тела клетки, называются нервными волокнами. Нервные волокна, не выходящие за пределы центральной нервной системы, образуют проводники головного и спинного мозга. Волокна, направляющиеся за пределы центральной нервной системы, собираются в пучки и образуют периферические нервы.

Проходящие внутри головного и спинного мозга нервные волокна имеют различную протяженность - одни из них вступают в контакт с нейронами, расположенными близко, другие с нейронами, находящимися на большем расстоянии, а третьи далеко удаляются от тела своей клетки. В связи с этим можно выделить три вида проводников, осуществляющих передачу импульса в пределах центральной нервной системы.

1. Проекционные проводники осуществляют связь вышележащих отделов центральной нервной системы с отделами, расположенными ниже. (рис. 4). Среди них различают два вида путей. Нисходящие проводят импульсы от вышележащих отделов головного мозга вниз и называются центробежными. Они являются двигательными по характеру. Пути, направляющие с периферии проводящие импульсы от кожи, мышц, суставов, связок, костей к центру, имеют восходящее направление и называются центростремительными. По характеру они являются чувствительными.

Рис. 4.

I - задний спинномозговой пучок; II - волокна заднего канатика; III - спинно-бугровый пучок; IV - передний корково-спинальный пучок; V - боковой корково-спинальный пучок; VI - преддверно-спинальный пучок

2. Комиссуральные, или спаечные, проводники соединяют между собой полушария головного мозга. Примерами такого рода соединений являются мозолистое тело, соединяющее правое и левое полушария, передняя спайка, спайка крючковидной извилины и серая спайка зрительного бугра, соединяющая обе половины зрительного бугра.

3. Ассоциативные, или сочетательные, проводники соединяют участки мозга в пределах одного полушария. Короткие волокна соединяют различные извилины в одной или близко расположенных долях, а длинные тянутся от одной доли полушария к другой. Например, дугообразный пучок соединяет нижний и средний отделы лобной доли, нижний продольный соединяет височную долю с затылочной. Выделяют лобно-затылочный, лобно-теменной пучки и др. (рис. 5).

Рис. 5.

I - верхний продольный (или дугообразный) пучок; II - лобно-затылочный пучок; III - нижний продольный пучок; IV - поясной пучок; V - крюковидный пучок; VI - дугообразное волокно; VII - большая спайка (мозолистое тело)

Рассмотрим ход главных проекционных проводников головного и спинного мозга.

Центробежные пути

Пирамидный путь начинается от крупных и гигантских пирамидных клеток (клетки Беца), расположенных в пятом слое передней центральной извилины и парацентральной дольке. В верхних отделах располагаются пути для ног, в средних отделах передней центральной извилины - для туловища, ниже - для рук, шеи и головы. Таким образом, проекция частей тела человека в головном мозге представлена в перевернутом виде. Из всей суммы волокон образуется мощный пучок, который проходит через внутреннюю сумку. Затем пирамидный пучок проходит через основание ножки мозга, варолиев мост, вступая в продолговатый, а затем в спинной мозг.

На уровне варолиева моста и продолговатого мозга часть волокон пирамидного пути заканчивается в ядрах черепно-мозговых нервов (тройничном, отводящем, лицевом, языкоглоточном, блуждающем, добавочном, подъязычном). Этот короткий пучок волокон носит название корково-бульбарного пути. Он начинается от нижних отделов передней центральной извилины. Перед вступлением в ядра нервные волокна короткого пирамидного пути перекрещиваются. Другой, более длинный пучок пирамидных нервных волокон, начинаясь от верхних отделов передней центральной извилины, спускается вниз в спинной мозг и называется корково-спинальным путем. Последний на границе продолговатого мозга со спинным образует неполный перекрест, причем большая часть нервных волокон (подвергнувшихся перекресту) продолжает свой путь в боковых столбах спинного мозга, а меньшая часть (неперекрещенные) идет в составе передних столбов спинного мозга своей стороны. Оба отрезка заканчиваются в двигательных клетках переднего рога спинного мозга.

Пирамидный путь (корково-спинальный и корково-бульбарный) является центральным отрезком пути, передающим двигательные импульсы от клеток коры головного мозга к ядрам черепно-мозговых нервов и клеткам спинного мозга. Он не выходит за пределы центральной нервной системы.

От двигательных ядер черепно-мозговых нервов и от клеток передних рогов спинного мозга начинается периферический отрезок пути, по которому импульс направляется к мышцам. Следовательно, передача двигательного импульса осуществляется по двум нейронам. Один проводит импульсы от клеток коры двигательного анализатора к клеткам передних рогов спинного мозга и к ядрам черепно-мозговых нервов, другой - к мышцам лица, шеи, туловища и конечностей (рис.6).

При поражении пирамидного пути наступает нарушение движений на стороне, противоположной поражению, которое может быть выражено полным отсутствием движений в мышцах (паралич) либо частичным их ослаблением (парез). В зависимости от места поражения различают центральный и периферический параличи или парезы.

Рис. 6.

I - корково-спинальный пучок; II - корково-бульбарный пучок; III - перекрещенная часть корково-спинального пучка; IV - неперекрещенная часть корково-спинального пучка; V - перекрест пирамид; VI - хвостатое ядро; VII - бугор; VIII - чечевичное ядро; IX - бледный шар; X - ножка мозга; XI - варолиев мост; XII - продолговатый мозг; К. VII - ядро лицевого нерва; К. XII - ядро подъязычного нерва

Монаковский пучок начинается в среднем мозге от красных ядер. Сразу по выходе из красного ядра волокна перекрещиваются и, пройдя задний мозг, опускаются в спинной мозг. В спинном мозге этот пучок нервных волокон располагается в боковых столбах около пучка перекрещенного пирамидного пути и постепенно заканчивается, как и пирамидный путь, в клетках передних рогов спинного мозга.

Монаковский пучок проводит двигательные импульсы, регулирующие мышечный тонус.

Кровельно-спинальный пучок соединяет переднее двухолмие среднего мозга с передними и отчасти боковыми столбами спинного мозга. Участвует в осуществлении зрительных и слуховых ориентировочных рефлексов.

Преддверно-спинальный пучок начинается в ядрах вестибулярного аппарата (в ядре Дейтерса). Волокна спускаются в спинной мозг и проходят в передних и отчасти боковых столбах. Заканчиваются волокна в клетках передних рогов. Так как ядро Дейтерса связано с мозжечком, то по этому пути идут импульсы от вестибулярной системы и мозжечка к спинному мозгу; участвует в функции равновесия.

Сетевидно-спиналъный пучок начинается от сетчатой формации продолговатого мозга, проходит разными пучками в передних и боковых столбах спинного мозга. Заканчивается в клетках переднего рога; проводит жизненно важные импульсы от координаторного центра заднего мозга.

Задний продольный пучок состоит из восходящих и нисходящих волокон. Он проходит через ствол головного мозга в передние столбы спинного мозга. По этому пути проходят импульсы от мозгового ствола и сегментов спинного мозга, от вестибулярного аппарата и ядер глазных мышц, а также от мозжечка.

Чтобы контролировать работу всего организма или каждого отдельного органа, моторного аппарата, требуются проводящие пути спинного мозга. Их основной задачей является доставка импульсов, посылаемых человеческим «компьютером» к телу, конечностям. Любой сбой в процессе отправки или принятия импульсов рефлекторной или симпатической природы чреват серьезнейшими патологиями здоровья и всей жизнедеятельности.

Что такое проводящие пути в спинном и головном мозге?

Проводящие пути головного и спинного мозга выступают в роли комплекса нейронных структур. В ходе их работы реализуется посыл импульсных толчков в конкретные области серого вещества. По сути, импульсы представляют собой сигналы, побуждающие тело к действию по призыву мозга. Несколько групп различных в соответствии с функциональными особенностями, представляют собой проводящие пути спинного мозга. К ним относят:

  • проекционные нервные окончания;
  • ассоциативные пути;
  • комиссуральные связующие корешки.

Кроме того, работоспособность спинномозговых проводников обуславливает необходимость выделения следующей классификации, согласно которой они могут быть:

  • моторными;
  • сенсорными.

Чувствительное восприятие и двигательная активность человека

Сенсорные или чувствительные проводящие пути спинного и головного мозга служат незаменимым элементом контакта между этими двумя сложнейшими системами в организме. Они же отправляют импульсивный посыл каждому органу, мышечным волокнам, рукам и ногам. Мгновенный посыл импульсного сигнала - основополагающий момент в осуществлении человеком скоординированных согласованных движений тела, выполняемых без приложения каких-либо осознанных усилий. Импульсы, посылаемые мозгом, нервные волокна могут распознавать через осязание, чувство боли, температурный режим тела, суставно-мышечную моторику.

Двигательные проводящие пути спинного головного мозга предопределяют качество рефлекторной реакции человека. Обеспечивая посыл импульсных сигналов от головы к рефлекторным окончаниям хребта и мышечному аппарату, они наделяют человека способностью самоконтроля моторики - координации. Также на этих проводящих путях лежит ответственность за передачу побуждающих толчков в сторону зрительных и слуховых органов.

Где находятся проводящие пути?

Ознакомившись с анатомическими отличительными чертами спинного мозга, необходимо разобраться с тем, где те самые проводящие пути спинного мозга располагаются, ведь под данным термином предполагается множество нервных материй и волокон. Размещаются они в специфических жизненно необходимых веществах: сером и белом. Соединяя между собой спинномозговые рога и кору левого и правого полушарий, проводящие пути посредством нейронной связи обеспечивают контакт между двумя данными отделами.

Функции проводников главнейших человеческих органов заключаются в реализации предназначенных задач с помощью конкретных отделов. В частности, проводящие пути спинного мозга находятся в пределах верхних позвонков и головы, более подробно описать это можно таким образом:

  1. Ассоциативные связи - своеобразные «мосты», которые связывают области между корой полушарий и ядрами спинномозгового вещества. В их структуре встречаются волокна различных размеров. Относительно короткие не выходят за пределы полушария или его мозговой доли. Более длинные нейроны передают импульсы, проходящие через некоторое расстояние к серому веществу.
  2. Комиссуральные пути представляют собой тело, обладающее мозолистой структурой и выполняющее задачу соединения новообразованных отделов в голове и спинном мозге. Волокна от главной доли распускаются лучеобразно, помещаются они в белой спинномозговой субстанции.
  3. Проекционные нервные волокна находятся непосредственно в спинном мозге. Их работоспособность дает возможность импульсам в сжатые сроки возникать в полушариях и налаживать связь с внутренними органами. Разделение на восходящие и нисходящие проводящие пути спинного мозга касается именно волокон данного типа.

Система восходящих и нисходящих проводников

Восходящие проводящие пути спинного мозга восполняют потребность человека в зрении, слухе, моторных функциях и их контакте с важными системами организма. Рецепторы данных связей находятся в пространстве между гипоталамусом и первыми сегментами позвоночного столба. Восходящие пути спинного мозга способны принять и отправить далее импульсный толчок, поступающий с поверхности верхних слоев эпидермиса и слизистых оболочек, органов жизнеобеспечения.

В свою очередь, нисходящие проводящие пути спинного мозга включают в свою систему следующие элементы:

  • Нейрон пирамидный (берет свое начало в коре полушарий, затем устремляется вниз, минуя мозговой ствол; каждый его пучок располагается на спинномозговых рогах).
  • Нейрон центральный (является моторным, связывающим передние рога и кору полушарий с рефлекторными корешками; вместе с аксонами в цепочку входят и элементы периферической нервной системы).
  • Волокна спиномозжечковые (проводники нижних конечностей и столба спинного мозга, включая клиновидные и тонкие связки).

Обычному человеку, не специализирующемуся в области нейрохирургии, достаточно сложно разобраться в системе, которую представляют сложные проводящие пути спинного мозга. Анатомия этого отдела действительно является запутанной структурой, состоящей из нейронных импульсных передач. Но именно благодаря ей организм человека существует как единое целое. За счет двойного направления, по которому действуют проводящие пути спинного мозга, обеспечивается моментальная передача импульсов, которые несут в себе информацию от управляемых органов.

Проводники глубокой сенсорики

Структура нервных связок, действующая в восходящем направлении, является многосоставной. Данные проводящие пути спинного мозга образованы несколькими элементами:

  • пучок Бурдаха и пучок Голля (представляют собой пути глубокой чувствительности, расположенные с задней стороны позвоночного столба);
  • спиноталамический пучок (находится сбоку спинномозгового столба);
  • пучок Говерса и пучок Флексига (мозжечковые пути, расположенные по бокам столба).

Внутри межпозвоночных узлов расположены глубокой степени чувствительности. Отростки, локализованные на периферических участках, завершаются в наиболее подходящих мышечных тканях, сухожилиях, костно-хрящевых волокнах и их рецепторах.

В свою очередь, центровые отростки клеток, располагаясь позади, держат направление к спинному мозгу. Проводя глубокую чувствительность, задние нервные корешки не углубляются в серое вещество, образуя лишь задние спинномозговые столбы.

Там, где подобные волокна входят в спинной мозг, происходит их разделение на короткие и длинные. Далее проводящие пути спинного и головного мозга отправляются к полушариям, где происходит их кардинальное перераспределение. Основная их часть остается в зонах передних и задних центральных извилин, а также в области темени.

Отсюда следует, что данные пути проводят чувствительность, благодаря которой человек может ощутить, как работает его мышечно-суставный аппарат, почувствовать любое вибрационное движение или тактильное прикосновение. Пучок Голля, находящийся прямо по центру спинного мозга, распределяет чувствительность от нижнего отдела туловища. Пучок Бурдаха расположен выше и служит проводником чувствительности верхних конечностей и соответствующего отдела туловища.

Как узнать о степени сенсорики?

Определить степень глубокой чувствительности можно с помощью нескольких простых тестов. Для их выполнения больному закрывают глаза. Его задачей является определение конкретного направления, в котором врач или исследователь делает движения пассивного характера в суставах пальцев, рук или ног. Желательно также описать подробно позу тела или положение, которое приняли его конечности.

При помощи камертона на предмет вибрационной чувствительности можно исследовать проводящие пути спинного мозга. Функции этого прибора помогут точно определить время, на протяжении которого пациент четко ощущает вибрирование. Для этого берут прибор и нажимают на него, чтобы появился звук. В этот момент необходимо выставить на любой костный выступ на теле. В случае когда такая чувствительность выпадает раньше, чем в других случаях, можно предположить, что поражены задние столбы.

Тест на чувство локализации подразумевает, что больной, закрыв глаза, точно указывает на место, в котором за несколько секунд перед этим к нему прикоснулся исследователь. Удовлетворительным показатель считается тогда, если пациентом допущена погрешность в рамках одного сантиметра.

Сенсорная восприимчивость кожных покровов

Строение проводящих путей спинного мозга позволяет на периферическом уровне определить степень кожной чувствительности. Дело в том, что нервные отростки протонейрона участвуют в кожных рецепторах. Отростки, расположенные по центру в составе задних отростков, устремляются прямо к спинному мозгу, вследствие чего там образуется зона Лисауэра.

Так же, как и путь глубокой чувствительности, кожный складывается из нескольких последовательно объединенных нервных клеток. В сравнении со спиноталамическим пучком нервных волокон информационные импульсы, передаваемые от нижних конечностей или нижнего отдела туловища, находятся немного выше и посередине.

Кожная чувствительность различается по критериям, исходя из природы раздражителя. Она бывает:

  • температурной;
  • тепловой;
  • болевой;
  • тактильной.

При этом последний вид кожной чувствительности, как правило, передается проводниками глубокой чувствительности.

Как узнать о болевом пороге и различии температуры?

Чтобы определить уровень болевых ощущений, врачи применяют метод укалывания. В самых неожиданных местах для пациента врач наносит несколько легких уколов с помощью булавки. Глаза больного должны быть закрыты, т.к. видеть, что происходит, он не должен.

Порог температурной чувствительности определить несложно. При нормальном состоянии человек испытывает различные ощущения при температурах, разница которых составляла порядка 1-2°. Для выявления патологического дефекта в виде нарушения кожной чувствительности врачи используют специальный аппарат - термоэстезиометр. Если же его нет, можно провести тест на теплую и горячую воду.

Патологии, связанные с нарушением проводящих путей

В восходящем направлении проводящие пути спинного мозга образованы в таком положении, благодаря которому человек может ощущать тактильные прикосновения. Для исследования необходимо взять что-то мягкое, нежное и в ритмичном порядке провести тонкое обследование на выявление степени чувствительности, а также проверку реакции волосков, щетинок и т.д.

Расстройствами, вызванными кожной чувствительностью, на сегодняшний день считают такие:

  1. Анестезия - полная утрата чувствительности кожи на конкретной поверхностной области тела. При нарушении болевой чувствительности возникает анальгезия, при температурной - терманестезия.
  2. Гиперестезия - обратное анестезии явление, возникающее при понижении порога возбуждения, при его повышении появляется гипальгезия.
  3. Неправильное восприятие раздражающих факторов (например, пациент путает холодное и теплое) называется дизестезией.
  4. Парестезия - это нарушение, проявлений которого может быть огромное множество, начиная от ползающих мурашек, чувства от удара током и его прохождения через весь организм.
  5. Гиперпатия имеет самую яркую выраженность. Ей свойственно также поражение зрительного бугра, повышение порога возбудимости, невозможность локально определить раздражитель, тяжелая психоэмоциональная окраска всего происходящего и слишком резкая двигательная реакция.

Особенности структуры нисходящих проводников

Нисходящие проводящие пути головного и спинного мозга включают в себя несколько связок, среди которых:

  • пирамидная;
  • рубро-спинальная;
  • вестибуло-спинальная;
  • ретикуло-спинальная;
  • задняя продольная.

Все вышеуказанные элементы - двигательные проводящие пути спинного мозга, которые являются составляющими нервных связок в нисходящем направлении.

Так называемый пирамидный путь начинается от огромнейших одноименных клеток, находящихся в верхнем слое полушария мозга, в основном в зоне центральной извилины. Здесь же расположен проводящий путь переднего канатика спинного мозга - этот важный элемент системы направлен вниз и проходит через несколько отделов задней бедренной капсулы. В точке пересечения продолговатого и спинного мозга можно обнаружить неполный перекрест, образующий прямой пирамидный пучок.

В покрышке среднего мозга присутствует проводящий рубро-спинальный путь. Начало он берет от красных ядер. При выходе его волокна перекрещиваются и проходят в спинной мозг через варолиев и продолговатый мозг. Рубро-спинальный путь позволяет проводить импульсы от мозжечка и подкорковых узлов.

Проводящие пути спинного мозга начинаются в ядре Дейтерса. Располагаясь в стволе мозга, вестибуло-спинальный путь продолжается в спинном и оканчивается в его передних рогах. От этого проводника зависит прохождение импульсов от вестибулярного аппарата к периферической системы.

В клетках сетчатой формации заднего мозга начинается ретикуло-спинальный путь, который в белом веществе спинного мозга рассеян отдельными пучками преимущественно сбоку и спереди. По сути, это главный связующий элемент между рефлекторным мозговым центром и опорно-двигательным аппаратом.

Задняя продольная связка также участвует в соединении двигательных структур со стволом головного мозга. От нее зависит работа глазодвигательных ядер и вестибулярного аппарата в целом. Задний продольный пучок находится в шейном отделе позвоночника.

Последствия заболеваний спинного мозга

Таким образом, проводящие пути спинного мозга являются жизненно важными соединительными элементами, предоставляющими человеку возможность движения и чувствительности. Нейрофизиология данных путей связана с особенностями строения позвоночника. Известно, что структура спинного мозга, окруженного мышечными волокнами, имеет цилиндрическую форму. Внутри веществ спинного мозгового ствола ассоциативные и двигательные рефлекторные пути контролируют функциональность всех систем организма.

При возникновении заболевания спинного мозга, механического повреждения или пороков развития проводимость между двумя основными центрами может существенно снизиться. Нарушения проводящих путей угрожают человеку полным прекращением двигательной активности и потерей сенсорного восприятия.

Основной причиной отсутствия импульсной проводимости является отмирание нервных окончаний. Самая сложная степень нарушения проводимости между головным и спинным мозгом заключается в парализации и отсутствиия чувствительности в конечностях. Затем могут наблюдаться проблемы в работе внутренних органов, связанных с мозгом поврежденной нейронной связкой. Например, нарушения в нижнем отделе спинномозгового ствола несут за собой неконтролируемое человеком мочеиспускание и процессы дефекации.

Лечат ли болезни спинного мозга и проводящих путей?

Только появившиеся дегенеративные изменения практически моментально отражаются на проводниковой деятельности спинного мозга. Угнетение рефлексов ведет к явно выраженным патологическим переменам, обусловленным гибелью нейронных волокон. Полностью восстановить нарушенные участки проводимости невозможно. Заболевание наступает стремительно и прогрессирует молниеносно, поэтому избежать грубых нарушений проводимости можно только в том случае, если своевременно начать медикаментозное лечение. Чем раньше это будет сделано, тем больше появится шансов на прекращение патологического развития.

Непроводимость проходящих путей спинного мозга нуждается в лечении, первоочередной задачей которого станет остановка процессов отмирания нервных окончаний. Добиться этого можно только в случае пресечения факторов, повлиявших на возникновение заболевания. Только после этого можно приступать к терапии с целью максимально возможного восстановления чувствительности и двигательных функций.

Лечение медикаментами направлено на прекращение процесса отмирания мозговых клеток. Их задачей является также восстановление нарушенной кровоподачи к поврежденному участку спинного мозга. В ходе лечения врачи учитывают возрастные особенности, характер и степень тяжести повреждения и прогрессирования болезни. В терапии проводящих путей важно поддерживать постоянную стимуляцию нервных волокон с помощью электрических импульсов. Это позволит сохранить удовлетворительный мышечный тонус.

Хирургическое вмешательство проводят с целью восстановления проводимости спиного мозга, поэтому проводят его по двум направлениям:

  1. Пресечение причин парализации деятельности нейронных связей.
  2. Стимулирование спинномозгового ствола для скорейшего приобретения утраченных функций.

Предшествовать операции должно полное медицинское обследование всего организма. Это позволит определить локализацию процессов дегенерации нервных волокон. В случае тяжелейших травм позвоночника необходимо сначала устранить причины компрессии.