Заболевания, эндокринологи. МРТ
Поиск по сайту

Минеральные соли для организма. Биологическая роль минеральных солей в организме

Всем известно, что наш организм в основном состоит из воды (ее около 65% у взрослых и 85% у детей), но мало кому известно, что является остальными «строительными» компонентами. Это неорганические вещества, а именно микроэлементы и минеральные соли. Но, несмотря на то, что процент их содержания всего лишь 4-5%, они играют огромную роль в нашей жизнедеятельности.

Более того они являются необходимы для выполнения множества функций. Например, они являются неким строительным материалом нашего скелета, зубов. Некоторые из минеральных солей регулируют водно-солевой баланс, другие играют свою значительную роль при выделении, накоплении и использовании энергии. Они входят в состав крови и обеспечивают процесс кроветворения. Эти минеральные соли в организме человека необходимы при регенерации его тканей.

Ионы растворимых солей K+, Na+, Mg2+, Cl-, SO4 2- выполняют ряд функций:

* регулируют мембранную проницаемость;
* организовывают условия для передачи нервных импульсов;
* держат в норме осмотическое давление крови и регулируют водный баланс;
* участвуют в сокращениях мышц;
* усиливают воздействие соков желудка, участвуют в формировании щелочных и кислых ферментов.
* уравновешивают pH баланс;

Следовательно, их недостаток наносит вред организму. Но все хорошо в меру, так например избыток солей приводит к скоплению лишней воды в организме, нарушается кровяное давление. К тому же их накопление в органах и тканях может спровоцировать множество малоприятных заболеваний.

Современные специалисты утверждают, что человеку для нормальной жизни необходимо 20 минеральных веществ. Попасть в организм они могут с пищей, но и не только. Также их поступление происходит во время дыхания и курения, ведь они содержатся в листьях табака.

К сожалению, до сих пор ни одна организация, в том числе и ВОЗ (Всемирная Организация Здоровья), не смогли точно определить норму минеральных солей в организме человека, разработаны лишь рекомендации. Точно выяснено лишь, что необходимое количество зависит от условий и образа жизни конкретного индивидуума.

В любом случае, чтобы держать в норме их содержание необходимо соблюдать правильное питание, а именно ежедневно употреблять пищу растительного и животного происхождения, а также норму воды.

Ко всему прочему, минеральные соли в виде ионов, а также различных соединений с другими веществами, уже присутствуют в клетках нашего тела. Одними из важнейших веществами для жизнедеятельности считаются натрий, магний, калий и кальций. Стоит отметить и роль хлора, фосфора вкупе с серой. За сутки нам нужны лишь их миллиграммы.

Стоит быть осторожными с некоторыми продуктами питания, так как они способны порой неправильно концентрировать в себе отдельные минеральные соли, для человека же это недопустимо. К ним относятся злаки, морские водоросли, морепродукты.

Также мы с редакцией сайта www.сайт предупреждаем вас, что нарушив баланс минеральных солей в организме мы рискуем сбить кислотно-щелочное равновесие. А это ведет к таким заболеваниям как .

В результате нехватки магния, может возникнуть глухота. При дефиците железа возникает .

Больше других минеральных солей мы употребляем хлорид натрия. Натрий регулирует количество воды в организме, а хлор, соединившись с водородом, образует ту самую соляную кислоту сока желудка, которая так важна для переваривания пищи. Нехватка ведет к усиленному выводу воды из организма и плохому перевариванию пищи. Ее излишек создает задержки воды в организме и отеки. Так что значение соли для человека велико! И не менее важно придерживаться норм ее потребления – не более 1-2 г в сутки. Такая же примерная норма есть и у других солей.

Чтобы этого избежать, надо запомнить, что кислые минеральные вещества, а с ними и соли содержаться в мясе, рыбе, хлебе, . А щелочные вырабатываются при переваривании овощей и фруктов.

Пожилым людям необходимо усилить потребление именно последней категории продуктов. Так они восполнят , магния, железа и .

Это важно, так как например соли кальция составляют нашу кровь, соки клеток и тканей. Они обеспечивают работу защитных механизмов организма, а также поддерживают мышцы и нервы в нужной форме. Недостаток этого минерального вещества ведет к ослаблению сердечной мышцы.

Лучше всего организм усваивает кальций из молочных продуктов и сыра. А вот из хлебных продуктов его усвоить тяжело.

Думаю, у вас нет сомнений - нужны ли минеральные соли человеку. Важно еще знать, что они при поступлении в организм могут быть не усвоены им.

Для правильной усвояемости минеральных веществ необходимо делать перерыв в употреблении продуктов богатых одними и теми же солями на 7 часов. В противном случае они становятся малодоступными для усвоения и в конце концов это приводит к расстройству работы желудка.

Очень важно употреблять пищу каждый день в одно и то же время. Это вырабатывает определенный рефлекс, и пища лучше усваивается, а соответственно и соли, и минеральные вещества. Если вы отступили от этого правила, то в организме происходит сбой, приводящий к различным заболеваниям. Таким как гастриты, язвы.

Вредно много есть перед сном. Так вы не даете организму отдохнуть. Работа желудочно-кишечного тракта должна делать перерыв как минимум на 6 часов, а наедаясь вечером вы лишаете ее этого законного права. Лучше всего, чтобы последний прием пищи был за 3 часа до отхода ко сну, и чтобы состоял он из кисломолочных продуктов и фруктов.

Не забывайте, что минеральные соли нужны нашему организму для нормальной работы так же, как и витамины. Поэтому не пренебрегайте вышеизложенными рекомендациями.

Минеральные соли выполняют многообразные функции в организме. Они играют важную роль в пластических процессах, формировании и построении тканей организма, регулируют обмен веществ, кислотно-щелочное равновесие и водный обмен, участвуют в синтезе белка, различных ферментативных процессах, работе эндокринных желез. В организме человека уже найдено более 60 из 104 известных в природе минеральных элементов. Минеральные вещества, имеющиеся в пищевых продуктах в значительных количествах, называются макроэлементами. Среди них наибольшее гигиеническое значение имеют кальций, фосфор, натрий и калий.

Кальций входит в состав костных тканей. Он оказывает существенное влияние на обмен веществ и работу сердечной мышцы, способствует повышению защитных сил организма, участвует в процессе свёртывания крови и обладает противовоспалительным действием. Недостаточность кальция в организме отрицательно сказывается на процессах окостенения, функции сердечной мышцы и протекании ряда ферментативных процессов. Суточная норма кальция для взрослых 800 мг. Особенно богаты кальцием молоко и молочные продукты (творог, брынза, сметана).

Фосфор, так же как и кальций, необходим для образования костей. Он играет большую роль в деятельности нервной системы. Органические соединения фосфора расходуются при сокращении мышц, а также в биохимических процессах, протекающих в мозгу, печени, почках и других органах. Суточная норма фосфора 1600 мг. Основные источники фосфора: сыр, печень, яйца, мясо, рыба, фасоль, горох. Для удовлетворения потребности организма в кальции и фосфоре важное значение имеют условия для их оптимального усвоения. Кальций и фосфор хорошо усваиваются, когда соотношения между ними составляют 1:1,5 (молоко и молочные продукты, гречневая каша с молоком).

Натрий находится во многих органах, тканях и биологических жидкостях организма. Он играет важную роль в процессах внутриклеточного и межклеточного обмена. Натрий имеет большое значение для поддержания осмотического давления в крови и тканевых жидкостях, а также для водного обмена. Человек получает натрий главным образом с поваренной солью, которая придаёт вкус пище и возбуждает аппетит. В обычных условиях суточная потребность в хлористом натрии составляет 10-15 г. При высоких температурах воздуха организм может терять с потом значительное количество поваренной соли. Поэтому при обильном потоотделении потребность в ней возрастает до 20-25 г.

Калий является незаменимым биоэлементом для человека. Потребность взрослых в калии составляет 2000-3000 мг в день и в основном покрывается за счёт приёма растительных продуктов и мяса.

Важную роль в жизнедеятельности организма играют также железо, кобальт, йод, фтор, бром, калий, хлор, марганец, цинк. В организме и пищевых продуктах они находятся в весьма малых количествах. Минеральные вещества содержатся и поступают в организм с овощами и фруктами.

Нельзя забывать и о воде . Она нужна прежде всего для введения в кровь растворов питательных веществ, для удаления из организма ненужных продуктов обмена, а также для регулирования температуры тела. Суточная потребность молодого организма в воде составляет 1-2,5 л.

Недостаток воды ведёт к сгущению крови, к задержке вредных продуктов обмена веществ в тканях, к нарушению солевого равновесия. Не лучше и избыток ее, также ведущий к нарушению водносолевого равновесия в организме, созданию излишней нагрузки на сердце и выделительные органы.

Организм человека нуждается в систематическом снабжении минеральными солями. Среди них соли натрия, калия, кальция, магния, фосфора и хлора, которые относятся к макроэлементам, т.к. они необходимы ежедневно в сравнительно больших количествах; и железо, цинк, марганец, хром, йод, фтор, которые необходимы в очень малых количествах и поэтому называются микроэлементами.

Соли натрия и калия особенно тесно связаны с водным обменом. Ежедневно мы потребляем 7-15 г поваренной соли: 3-5 г содержится как составная часть в натуральных пищевых продуктах; 3-5 г в хлебе и 3-5 г при кулинарной обработке. Между тем избыточная соль способствует удержанию больших количеств воды в организме и тем самым загружает ненужной работой сердце и почки.

Соли калия, которые в большом количестве содержатся в овощах и фруктах, обладают противоположным эффектом. Обычно их умеренное увеличение в рационе питания способствует улучшению деятельности сердца и нормализации водного баланса.

Очень важными компонентами пищи являются кальций и фосфор. Они образуют минеральную основу скелета, вот почему потребности в них особенно велики в период роста. Кальций необходим и для нормальной возбудимости нервной системы и сокращаемости мышц. Возникающие при заболевании паращитовидных желез приступы судорог связаны с резким понижением содержания кальция в крови. Кроме того, кальций служит активатором ряда ферментов.

Взрослый человек должен получать с пищей примерно 0,8-1,0 г кальция в день, дети и подростки - 1-2 г, беременные и кормящие женщины - до 2 г. Степень усвояемости кальция зависит от соотношения его с другими солями, особенно с фосфатами и магнием, а также от обеспеченности организма витаминами группы D.

Важнейшие источники кальция:

Молоко коровье - 120 мг в 100г продукта;

Творог - 140 мг в 100г продукта;

Сыр - 700-1000 мг в 100г продукта;

Хлеб - 20-30 мг в 100г продукта;

Капуста - 48 мг в 100г продукта;

Картофель - 10 мг в 100г продукта.

Из микроэлементов - веществ, которые в очень малых количествах абсолютно необходимы для поддержания здоровья, мы, прежде всего, упомянем железо, важнейший компонент гемоглобина. В среднем с пищей взрослый человек должен получать ежедневно около 15 мг железа.

Важнейшие источники железа:

Печень говяжья - 8 мг в 100 г продукта;

Легкие - 10 мг в 100 г продукта;

Мясо - 2-3 мг в 100 г продукта;

Персики - 4 мг в 100 г продукта;

Яблоки - 2,5 мг в 100 г продукта;

Сливы - 2,1 мг в 100 г продукта;

Дыни - 2,6 мг в 100 г продукта;

Цветная капуста - 1,4 мг в 100 г продукта;

Картофель - 1,2 мг в 100 г продукта;

Белые грибы свежие - 5,2 мг в 100 г продукта;

Белые грибы сушеные - 35 мг в 100 г продукта;

Хлеб ржаной - 2 мг в 100 г продукта.

Дневная потребность человека в других микроэлементах выражается в немногих миллиграммах и даже долях миллиграмма: цинка - 5-10, меди - 2-2,5, фтора - 1,0, йода - 0,2 и т.д.

В зависимости от района проживания у людей разная необходимость в микроэлементах.

Если человеку недостает йода или фтора, это сказывается на его здоровье. Так, при нехватке йода снижается функция щитовидной железы. Недостаток фтора приводит к увеличению заболеваемости кариесом зубов и т.д.

Великолепным источником йода, фтора и многих других микроэлементов являются морские рыбы и другие продукты моря (креветки, мидии и др.).


Активная роль минеральных солей в обменных процессах организма и регуляции его функций не оставляет сомнений в их необходимости. Эндогенный синтез их невозможен, ввиду чего они стоят особняком относительно других веществ подобной функциональности, например, гормонов и даже витаминов.

Управление жизненно важными процессами организма человека осуществляется путем поддержания кислотно-щелочного баланса, определенной концентрации тех или иных минеральных солей, взаимного соотношения их количества. Эти показатели влияют на активность и выработку гормонов, ферментов, определяют течение биохимических реакций.

Человеческое тело получает и использует практически все известные таблице Менделеева элементы, однако значение и функции большинства из них пока неизвестны. Принято разделение микроэлементов на две группы в зависимости от уровня их востребованности:

  • микроэлементы;
  • макроэлементы.

Все минеральные соли постоянно выводятся из организма, в той же мере они должны восполняться с пищей, иначе проблемы со здоровьем неизбежны.

Поваренная соль

Наиболее известная из минеральных солей, играющая важную роль на каждом столе, без присутствия ее не обходится практически ни одно блюдо. Химически представляет собой хлорид натрия.

Хлор участвует в образовании соляной кислоты, необходимой для пищеварения, защиты от глистной инвазии и являющейся составной частью желудочного сока. Недостаток хлора крайне негативно влияет на процесс переваривания пищи, провоцирует развитие мочевого отравления крови.

Натрий – крайне важный элемент, осуществляет регуляцию количества воды в организме, влияет на функционирование нервной системы человека. Удерживает в клетках тканей и кровеносной системе магний и известь. Играет ключевую роль в регуляции обмена минеральных солей и воды в организме, являясь основным внеклеточным катионом.

Калий

Калий вместе с натрием определяет функцию головного мозга, способствует его питанию глюкозой, поддерживает возбудимость мышечной и нервной тканей. Без калия невозможно сосредоточиться, мозг оказывается неспособен приняться за работу.

Необходимо влияние солей калия на переваривание крахмала, липидов, они участвуют в формировании мышц, обеспечивая их силу и крепость. Также он оказывает влияние на обмен минеральных солей и воды в организме, будучи основным внутриклеточным катионом.

Магний

Значение магния для человека и всех видов обмена веществ крайне велико. Помимо этого, он обеспечивает проводимость волокон нервных клеток, осуществляет регуляцию ширины просвета сосудов кровеносной системы, участвует в работе кишечника. Является протектором для клеток, укрепляя их мембраны и минимизируя последствия стрессовых воздействий. Соли магния обеспечивают прочность скелета и зубов, стимулируют выделение желчи.

Недостаток солей магния приводит к повышенной раздражительности, нарушениям таких функций высшей нервной деятельности, как память, внимание, расстройствам работы всех органов и их систем. Излишки магния организм эффективно выводит посредством кожи, кишечника и почек.

Марганец

Соли марганца предохраняют печень человека от ожирения, способствуют снижению уровня холестерина, принимают активное участие в обмене углеводов и жиров. Известно также их положительное влияние на функции нервной системы, выносливость мышц, процесс кроветворения, развитие костей. Марганец повышает свертываемость крови, помогает усвоению витамина B1.


Кальций

В первую очередь кальций необходим для формирования и развития костной ткани. Благодаря этому элементу происходит стабилизация мембран нервных клеток, а правильное количество его по отношению к калию обеспечивает нормальную деятельность сердца. Способствует он также усвоению фосфора, протеинов, а соли кальция в составе крови оказывают влияние на ее свертываемость.

Железо

Общеизвестна роль железа для процессов клеточного дыхания, поскольку он является составной частью гемоглобина и миоглобина мышц. Недостаток железа служит причиной кислородного голодания, последствия которого ударяют по всему организму. Особенно уязвим к этому фактору оказывается мозг, мигом теряющий работоспособность. Усвоение солей железа повышается с помощью аскорбиновой, лимонной кислоты, падает вследствие болезней пищеварительного тракта.

Медь

Соли меди работают в тесной связке с железом и аскорбиновой кислотой, участвуя в процессах кроветворения, клеточного дыхания. Даже при достаточном количестве железа дефицит меди приводит к малокровию и кислородному голоданию. Качество протекания процессов кроветворения и психическое здоровье человека также зависят от этого элемента.

Недостаток фосфора при обеспечении сбалансированного питания практически исключается. Однако следует учитывать, что излишек его неблагоприятно сказывается на количестве солей кальция и снабжении ими организма. В его сфере ответственности находятся процессы производства энергии и тепла из питательных веществ.

Формирование костной и нервной систем без фосфора и его солей невозможно, он также необходим для поддержания адекватной функции почек, печени, сердца, синтеза гормонов.

Фтор

Фтор является частью зубной эмали и костей и способствует сохранению их здоровья. Достаточное количество его солей в рационе беременной женщины уменьшает риск развития кариеса зубов ее ребенка в будущем. Велика их роль в процессах регенерации кожи, заживления ран, они улучшают усвоение железа организмом, помогают работе щитовидной железы.

Йод

Основная роль йода – его участие в работе щитовидной железы и синтезе ее гормонов. Некоторая часть йода находится в крови, яичниках и мышцах. Он укрепляет иммунную систему человека, участвует в развитии организма, помогает регулировать температуру тела.

Построение ногтей, кожных покровов и волос, нервной и мышечной тканей невозможно без солей кремния. Он также имеет большое значение для развития костной ткани и формирования хрящей, поддержания эластичности сосудистых стенок. Недостаток его создает риск развития сахарного диабета и атеросклероза.

Хром

Хром выполняет функцию регулятора инсулина, контролирует активность ферментной системы, занятой в обмене глюкозы, синтезе белков и жирных кислот. Недостаточное его количество может легко привести к диабету, а также является фактором риска в отношении развития инсульта.

Кобальт

Участие кобальта в процессах обеспечения поступления в мозг кислорода обязывает сделать на нем особый акцент. В организме представлен в двух формах: связанная, в составе витамина B12, именно в этом виде он и исполняет свою роль в синтезе эритроцитов; витаминонезависимая.

Цинк

Цинк обеспечивает протекание липидного и белкового обмена, является частью около 150 биологически активных веществ, вырабатываемых организмом. Крайне важен он для благополучного развития детей, поскольку участвует в формировании связей между клетками мозга, обеспечивает благополучное функционирование нервной системы. Также соли цинка задействованы в эритропоэзе, нормализуют функции эндокринных желез.

Сера

Сера присутствует практически везде в организме, во всех его тканях и моче. Недостаток серы способствует развитию раздражительности, нарушению функциональности нервной системы, развитию опухолей, кожных заболеваний.

Химический состав клеток растений и животных весьма сходен, что говорит о единстве их происхождения. В клетках обнаружено более 80 химических элементов, однако только в отношении 27 из них известна физиологическая роль.

Все элементы делят на три группы:

  • макроэлементы, содержание которых в клетке составляет до 10 - 3%. Это кислород, углерод, водород, азот, фосфор, сера, кальций, натрий и магний, составляющие вместе свыше 99% массы клеток;
  • микроэлементы, содержание которых колеблется от 10 - 3% до 10 - 12%. Это марганец, медь, цинк, кобальт, никель, йод, бром, фтор; на их долю приходится менее 1,0 % массы клеток;
  • мультрамикроэлементы, составляющие менее 10 - 12%. Это золото, серебро, уран, селен к др. - в сумме менее 0,01% массы клетки. Физиологическая роль большинства этих элементов не установлена.

Все перечисленные элементы входят в состав неорганических и органических веществ живых организмов или содержатся в виде ионов.

Неорганические соединения клеток представлены водой и минеральными солями.

Самое распространенное неорганическое соединение в клетках живых организмов - вода. Ее содержание в разных клетках колеблется от 10% в эмали зуба до 85% в нервных клетках и до 97 % в клетках развивающегося зародыша. Количество воды в клетках зависит от характера обменных процессов: чем они интенсивнее, тем выше содержание воды. В среднем в теле многоклеточных содержится около 80 % воды. Такое высокое содержание воды говорит о важной роли, обусловленной ее химической природой.

Дипольный характер молекулы воды позволяет ей формировать вокруг белков водную (сольватную) оболочку, препятствующую склеиванию их друг с другом. Это связанная вода, составляющая 4 - 5% от всего ее содержания. Остальную воду (около 95%) называют свободной. Свободная вода является универсальным растворителем для многих органических и неорганических соединений. Большинство химических реакций идет только в растворах. Проникновение веществ в клетку и выведение из нее продуктов диссимиляции в большинстве случаев возможно только в растворенном виде. Вода принимает и непосредственное участие в биохимических реакциях, протекающих в клетке (реакции гидролиза). С водой связана также регуляция теплового режима клеток, так как она обладает хорошей теплопроводностью и теплоемкостью.

Вода активно участвует в регуляции осмотического давления в клетках. Проникновение молекул растворителя через полупроницаемую мембрану в раствор вещества называется осмосом, а давление, с которым растворитель (вода) проникает через мембрану, - осмотическим. Величина осмотического давления возрастает с увеличением концентрации раствора. Осмотическое давление жидкостей организма человека и большинства млекопитающих равно давлению 0,85 % раствора хлорида натрия. Растворы с таким осмотическим давлением называются изотоническими, более концентрированные - гипертоническими, а менее концентрированные - гипотоническими. Явление осмоса лежит в основе напряжения стенок растительных клеток (тургор).

По отношению к воде все вещества делятся на гидрофильные (водорастворимые) - минеральные соли, кислоты, щелочи, моносахариды, белки и др. и гидрофобные (водонерастворимые) - жиры, полисахариды, некоторые соли и витамины и др. Кроме воды растворителями могут быть жиры и спирты.

Минеральные соли в определенных концентрациях необходимы для нормальной жизнедеятельности клеток. Так, азот и сера входят в состав белков, фосфор - в состав ДНК, РНК и АТФ, магний - в состав многих ферментов и хлорофилла, железо - в состав гемоглобина, цинк - в состав гормона поджелудочной железы, йод - в состав гормонов щитовидной железы и т. д. Нерастворимые соли кальция и фосфора обеспечивают прочность костной ткани, катионы натрия, калия и кальция - раздражимость клеток. Ионы кальция принимают участие в свертывании крови.

Анионы слабых кислот и слабые щелочи связывают ионы водорода (Н+) и гидроксила (ОН-), вследствие чего в клетках и межклеточной жидкости на постоянном уровне поддерживается слабощелочная реакция. Это явление называется буферностъю.

Органические соединения составляют около 20 - 30 % массы живых клеток. К ним относятся биологические полимеры - белки, нуклеиновые кислоты и полисахариды, а также жиры, гормоны, пигменты, АТФ и др.

Белки

Белки составляют 10 - 18 % от общей массы клетки (50 - 80 % от сухой массы). Молекулярная масса белков колеблется от десятков тысяч до многих миллионов единиц. Белки - это биополимеры, мономерами которых являются аминокислоты. Все белки живых организмов построены из 20 аминокислот. Несмотря на это, разнообразие белковых молекул огромно. Они различаются по величине, структуре и функциям, которые определяются количеством и порядком расположения аминокислот. Помимо простых белков (альбумины, глобулины, гистоны) имеются и сложные, представляющие собой соединения белков с углеводами (гликопротеиды), жирами (липопротеиды) и нуклеиновыми кислотами (нуклеопротеиды).

Каждая аминокислота состоит из углеводородного радикала, соединенного с карбоксильной группой, имеющей кислотные свойства (-СООН), и аминогруппой (-NH2), обладающей основными свойствами. Аминокислоты отличаются одна от другой только радикалами. Аминокислоты являются амфотерными соединениями, обладающими одновременно свойствами и кислот, и оснований. Это явление обусловливает возможность соединения кислот в длинные цепочки. При этом устанавливаются прочные ковалентные (пептидные) связи между углеродом кислотной и азотом основной групп (-CO-NH-) с выделением молекулы воды. Соединения, состоящие из двух аминокислотных остатков, называются дипептидами, из трех - трипептидами, из многих - полипептидами.

Белки живых организмов состоят из сотен и тысяч аминокислот, т. е. представляют собой макромолекулы. Различные свойства и функции белковых молекул определяются последовательностью соединения аминокислот, которая закодирована в ДНК. Эту последовательность называют первичной структурой молекулы белка, от которой, в свою очередь, зависят последующие уровни пространственной организации и биологические свойства белков. Первичная структура белковой молекулы обусловлена пептидными связями.

Вторичная структура белковой молекулы достигается ее спирализацией благодаря установлению между атомами соседних витков спирали водородных связей. Они слабее ковалентных, но, многократно повторенные, создают довольно прочное соединение. Функционирование в виде закрученной спирали характерно для некоторых фибриллярных белков (коллаген, фибриноген, миозин, актин и др.).

Многие белковые молекулы становятся функционально активными только после приобретения глобулярной (третичной) структуры. Она формируется путем многократного сворачивания спирали в трехмерное образование - глобулу. Эта структура сшивается, как правило, еще более слабыми дисульфидными связями. Глобулярную структуру имеет большинство белков (альбумины, глобулины и др.).

Для выполнения некоторых функций требуется участие белков с более высоким уровнем организации, при котором возникает объединение нескольких глобулярных белковых молекул в единую систему - четвертичную структуру (химические связи могут быть разные). Например, молекула гемоглобина состоит из четырех различных глобул и геминовой группы, содержащей ион железа.

Утрата белковой молекулой своей структурной организации называется денатурацией. Причиной ее могут быть различные химические (кислоты, щелочи, спирт, соли тяжелых металлов и др.) и физические (высокие температура и давление, ионизирующие излучения и др.) факторы. Вначале разрушается очень слабая - четвертичная, затем третичная, вторичная, а при более жестких условиях и первичная структура. Если под действием денатурирующего фактора не затрагивается первичная структура, то при возвращении белковых молекул в нормальные условия среды их структура полностью восстанавливается, т. е. происходит ренатурация. Это свойство белковых молекул широко используется в медицине для приготовления вакцин и сывороток и в пищевой промышленности для получения пищевых концентратов. При необратимой денатурации (разрушении первичной структуры) белки теряют свои свойства.

Белки выполняют следующие функции: строительную, каталитическую, транспортную, двигательную, защитную, сигнальную, регуляторную и энергетическую.

Как строительный материал белки входят в состав всех клеточных мембран, гиалоплазмы, органоидов, ядерного сока, хромосом и ядрышек.

Каталитическую (ферментативную) функцию выполняют белки-ферменты, в десятки и сотни тысяч раз ускоряющие течение биохимических реакций в клетках при нормальном давлении и температуре около 37 °С. Каждый фермент может катализировать только одну реакцию, т. е. действие ферментов строго специфично. Специфичность ферментов обусловлена наличием одного или нескольких активных центров, в которых происходит тесный контакт между молекулами фермента и специфического вещества (субстрата). Некоторые ферменты применяются в медицинской практике и пищевой промышленности.

Транспортная функция белков заключается в переносе веществ, например кислорода (гемоглобин) и некоторых биологически активных веществ (гормонов).

Двигательная функция белков состоит в том, что все виды двигательных реакций клеток и организмов обеспечиваются специальными сократительными белками - актином и миозином. Они содержатся во всех мышцах, ресничках и жгутиках. Их нити способны сокращаться с использованием энергии АТФ.

Защитная функция белков связана с выработкой лейкоцитами особых белковых веществ - антител в ответ на проникновение в организм чужеродных белков или микроорганизмов. Антитела связывают, нейтрализуют и разрушают не свойственные организму соединения. Примером защитной функции белков может служить превращение фибриногена в фибрин при свертывании крови.

Сигнальная (рецепторная) функция осуществляется белками благодаря способности их молекул изменять свою структуру под влиянием многих химических и физических факторов, вследствие чего клетка или организм воспринимают эти изменения.

Регуляторная функция осуществляется гормонами, имеющими белковую природу (например, инсулин).

Энергетическая функция белков заключается в их способности быть источником энергии в клетке (как правило, при отсутствии других). При полном ферментативном расщеплении 1 г белка выделяется 17,6 кДж энергии.

Углеводы

Углеводы - обязательный компонент как животных, так и растительных клеток. В растительных клетках их содержание достигает 90 % сухой массы (в клубнях картофеля), а в животных - 5 % (в клетках печени). В состав молекул углеводов входят углерод, водород и кислород, причем количество атомов водорода в большинстве случаев вдвое превышает число атомов кислорода.

Все углеводы подразделяются на моно-, ди- и полисахариды. Моносахариды чаще содержат пять (пентозы) или шесть (гексозы) атомов углерода, столько же кислорода и вдвое больше водорода (например, C6H12OH - глюкоза). Пентозы (рибоза и дезоксирибоза) входят в состав нуклеиновых кислот и АТФ. Гексозы (глюкоза и фруктоза) постоянно присутствуют в клетках плодов растений, придавая им сладкий вкус. Глюкоза содержится в крови и служит источником энергии для клеток и тканей животных. Дисахариды объединяют в одной молекуле два моносахарида. Пищевой сахар (сахароза) состоит из молекул глюкозы и фруктозы, молочный сахар (лактоза) включает глюкозу и галактозу. Все моно- и дисахариды хорошо растворимы в воде и имеют сладкий вкус. Молекулы полисахаридов образуются в результате полимеризации моносахаридов. Мономером полисахаридов - крахмала, гликогена, целлюлозы (клетчатки) является глюкоза. Полисахариды практически нерастворимы в воде и не обладают сладким вкусом. Основные полисахариды - крахмал (в растительных клетках) и гликоген (в клетках животных) откладываются в виде включений и служат запасными энергетическими веществами.

Углеводы образуются в зеленых растениях в процессе фотосинтеза и могут использоваться в дальнейшем для биосинтеза аминокислот, жирных кислот и других соединений.

Углеводы выполняют три основные функции: строительную (структурную), энергетическую и запасающую. Целлюлоза образует стенки растительных клеток; сложный полисахарид - хитин - наружный скелет членистоногих. Углеводы в соединении с белками (гликопротеиды) входят в состав костей, хрящей, сухожилий и связок. Углеводы выполняют роль основного источника энергии в клетке: при окислении 1 г углеводов высвобождается 17,6 кДж энергии. Гликоген откладывается в мышцах и клетках печени в качестве запасного питательного вещества.

Липиды

Липиды (жиры) и липоиды являются обязательными компонентами всех клеток. Жиры представляют собой сложные эфиры высокомолекулярных жирных кислот и трехатомного спирта глицерина, а липоиды - жирных кислот с другими спиртами. Эти соединения нерастворимы в воде (гидрофобны). Липиды могут образовывать сложные комплексы с белками (липопротеиды), углеводами (гликолипиды), остатками фосфорной кислоты (фосфолипиды) и др. Содержание жиров в клетке колеблется от 5 до 15 % массы сухого вещества, а в клетках подкожной жировой клетчатки - до 90 %.

Жиры выполняют строительную, энергетическую, запасающую и защитную функции. Бимолекулярный слой липидов (преимущественно фосфолипиды) образует основу всех биологических мембран клеток. Липиды входят в состав оболочек нервных волокон. Жиры являются источником энергии: при полном расщеплении 1 г жира высвобождается 38,9 кДж энергии. Они служат источником воды, выделяющейся при их окислении. Жиры являются запасным источником энергии, накапливаясь в жировой ткани животных и в плодах и семенах растений. Они защищают органы от механических повреждений (например, почки окутаны мягким жировым «футляром»). Накапливаясь в подкожной жировой клетчатке некоторых животных (киты, тюлени), жиры выполняют теплоизоляционную функцию.

Нуклеиновые кислоты Нуклеиновые кислоты имеют первостепенное биологическое значение и представляют собой сложные высокомолекулярные биополимеры, мономерами которых являются нуклеотиды. Они впервые были обнаружены в ядрах клеток, откуда и их название.

Существует два типа нуклеиновых кислот: дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК). ДНК входит в основном в хроматин ядра, хотя небольшое ее количество содержится и в некоторых органоидах (митохондрии, пластиды). РНК содержится в ядрышках, рибосомах и в цитоплазме клетки.

Структура молекулы ДНК была впервые расшифрована Дж. Уотсоном и Ф. Криком в 1953 г. Она представляет собой две полинуклеотидные цепи, соединенные друг с другом. Мономерами ДНК являются нуклеотиды, в состав которых входят: пятиуглеродный сахар - дезоксирибоза, остаток фосфорной кислоты и азотистое основание. Нуклеотиды отличаются один от другого только азотистыми основаниями. В состав нуклеотидов ДНК входят следующие азотистые основания: аденин, гуанин, цитозин и тимин. Нуклеотиды соединяются в цепочку путем образования ковалентных связей между дезоксирибозой одного и остатком фосфорной кислоты соседнего нуклеотида. Обе цепочки объединяются в одну молекулу водородными связями, возникающими между азотистыми основаниями разных цепочек, причем в силу определенной пространственной конфигурации между аденином и тимином устанавливаются две связи, а между гуанином и цитозином - три. Вследствие этого нуклеотиды двух цепочек образуют пары: А-Т, Г-Ц. Строгое соответствие нуклеотидов друг другу в парных цепочках ДНК называется комплементарное. Это свойство лежит в основе репликации (самоудвоения) молекулы ДНК, т. е. образования новой молекулы на основе исходной.

Репликация

Репликация происходит следующим образом. Под действием специального фермента (ДНК-полимеразы) разрываются водородные связи между нуклеотидами двух цепочек, и к освободившимся связям по принципу комплементарности присоединяются соответствующие нуклеотиды ДНК (А-Т, Г-Ц). Следовательно, порядок нуклеотидов в «старой» цепочке ДНК определяет порядок нуклеотидов в «новой», т. е. «старая» цепочка ДНК является матрицей для синтеза «новой». Такие реакции называются реакциями матричного синтеза, они характерны только для живого. Молекулы ДНК могут содержать от 200 до 2 x 108 нуклеотидов. Огромное разнообразие молекул ДНК достигается разными их размерами и различной последовательностью нуклеотидов.

Роль ДНК в клетке заключается в хранении, воспроизведении и передаче генетической информации. Благодаря матричному синтезу наследственная информация дочерних клеток точно соответствует материнской.

РНК

РНК, как и ДНК, представляет собой полимер, построенный из мономеров - нуклеотидов. Структура нуклеотидов РНК сходна с таковой ДНК, но имеются следующие отличия: вместо дезоксирибозы в состав нуклеотидов РНК входит пятиуглеродный сахар - рибоза, а вместо азотистого основания тимина - урацил. Остальные три азотистых основания те же: аденин, гуанин и цитозин. По сравнению с ДНК в состав РНК входит меньше нуклеотидов и, следовательно, ее молекулярная масса меньше.

Известны двух- и одноцепочечные РНК. Двухцепочечные РНК содержатся в некоторых вирусах, выполняя (как и ДНК) роль хранителя и передатчика наследственной информации. В клетках других организмов встречаются одноцепочечные РНК, которые представляют собой копии соответствующих участков ДНК.

В клетках существуют три типа РНК: информационная, транспортная и рибосомальная.

Информационная РНК (и-РНК) состоит из 300 - 30 000 нуклеотидов и составляет примерно 5 % от всей РНК, содержащейся в клетке. Она представляет собой копию определенного участка ДНК (гена). Молекулы и-РНК выполняют роль переносчиков генетической информации от ДНК к месту синтеза белка (в рибосомы) и непосредственно участвуют в сборке его молекул.

Транспортная РНК (т-РНК) составляет до 10 % от всей РНК клетки и состоит из 75-85 нуклеотидов. Молекулы т-РНК транспортируют аминокислоты из цитоплазмы в рибосомы.

Основную часть РНК цитоплазмы (около 85 %) составляет рибосомальная РНК (р-РНК). Она входит в состав рибосом. Молекулы р-РНК включают 3 - 5 тыс. нуклеотидов. Считают, что р-РНК обеспечивает определенное пространственное взаиморасположение и-РНК и т-РНК.