Заболевания, эндокринологи. МРТ
Поиск по сайту

Мононенасыщенной жирной кислотой является. Насыщенные и ненасыщенные жирные кислоты, жиры для поднятия иммунитета

Сейчас уже никто не сомневается в том, что полностью убирать жиры из своего рациона нельзя ни для похудения, ни для набора мышечной массы. Многие из жиров очень нужны и полезны.

Благодаря высокой калорийности жиры являются прекрасным источником энергии. В их состав помимо глицерина входят жирные кислоты, которые во многом определяют биологическую ценность пищевых продуктов.

Некоторые витамины не могут быть активными, если не будут растворены в жирах.

Функции жирных кислот

Жирные кислоты являются компонентами фосфолипидов и гликолипидов, входящих в структуру мембран клеток.

Жирные кислоты являются компонентами триацилглицеридов (нейтральных жиров) — главного источника энергии в организме, резервируемого в жировой ткани. См. .

В организме человека обнаружено около 70 различных жирных кислот. Из них наиболее распространенных около 20. Все они содержат неразветвленные цепи, построенные из четного числа (12 — 24) атомов углерода. Среди них преобладают кислоты, имеющие в цепи 16 и 18 атомов углерода C16 (пальмитиновая) и C18 (стеариновая, олеиновая и линолевая).

Жирные кислоты делятся на две группы: насыщенные и ненасыщенные в зависимости от химической природы.

Существует мнение, что полезны только ненасыщенные (источником которых в основном являются растительные масла), а животных жиров с насыщенными жирными кислотами нужно избегать. Но это очень спорная и небезопасная позиция. Ведь насыщенные жиры очень важны в организме.

Ненасыщенные жирные кислоты

Ненасыщенные (непредельные) жирные кислоты – это кислоты, в структуре которых присутствует одна или несколько двойных связей между соседними атомами углерода. Причём, химически эти двойные связи почти во всех случаях являются цис-двойными связями (не транс-). Это очень важное структурное отличие, делающее жирные кислоты активными и полезными.

Что это значит и какую пользу мы можем извлечь из этого для себя?

С помощью правильных двойных ненасыщенных связей кислоты имеют высокую реакционную окислительную способность. Это используется организмом для обновления клеточных мембран, регуляции их проницаемости, синтеза регуляторов иммунной защиты и других биологически активных веществ.

Двойных связей может быть разное количество: если такая связь присутствует в единственном экземпляре, то кислота называется мононенасыщенной (Омега-9, олеиновая кислота).

Если двойных связей несколько, кислоты называются полиненасыщенными. К ним относят Омега-3 (линоленовая) и Омега-6 кислоты (линолевая и арахидоновая).

В отличие от Омеги-9 полиненасыщенные кислоты не вырабатываются организмом человека и обязательно должны поступать с пищей.

Продукты с ненасыщенными жирными кислотами

Единственный животный жир, относящийся к этой же категории — рыбий.

Продукты с мононенасыщенной кислотой при небольшом охлаждении твердеют. Это можно наблюдать на примере оливкого масла, если поставить его в холодильник.

Насыщенные жирные кислоты

Насыщенные (предельные) жирные кислоты – это те жирные кислоты, в структуре которых нет двойных связей. Они считаются самыми вредными, именно на них сваливают весь вред жиров: от атеросклероза до ожирения.

При их избыточном употреблении действительно можно заработать целый «букет» различных заболеваний.

Но настолько бояться их, чтобы совсем убирать из рациона не стоит — ведь они участвуют в синтезе (в том числе тестостерона), переносе и усвоении витаминов и микроэлементов, а также являются источником энергии. Важно отметить, что недостаток животных жиров в рационе женщины может привести к гормональному дисбаланасу, а в крайнем случае и к бесплодию.

Продукты с насыщенными жирными кислотами

Продукты, с высоким содержанием насыщенных жиров, как правило, животного происхождения: сливочное масло, сливки, молоко, жирные сорта мяса. Есть закономерность – чем больше в продукте насыщенных кислот, тем сложнее его растопить, привести из твёрдого состояния в жидкое. Например, легко можно догадаться, где предельных кислот больше – в растительных или сливочном маслах.

Из растительных продуктов к содержащим много насыщенных жиров относятся и кокосовое масла, однако об их пользе или вреде до сих пор ведутся ожесточённые споры. Но, несмотря на это, их активно и в больших количествах добавляют в различные дешёвые продукты и суррогаты. Их польза для здоровья находится под сомнением.

Для лучшей усвояемости животных жиров их растапливают (например, используют для жарения на них). Усвояемость их повышается не только при растапливании, но и если превратить их в эмульсию. Таким образом, жирные кислоты из молока, сливочного масла, сливок лучше усвоятся организмом, чем из куска сала.

Если принимать в пищу в холодном состоянии полезнее продукты растительного происхождения с непредельными жирными кислотами, то готовить рекомендуется на животных жирах. При нагревании двойные связи масел будут подвергаться интенсивному окислению. Существует мнение, что в это время образуются канцерогенные вещества, которые при накоплении в организме вызывают рак.

Сколько жиров нужно человеку?

В повседневной жизни в сутки жиров необходимо употреблять около 1 г на кг массы тела. То есть, если Вы весите 65 кг, то жиров у Вас будет получаться 65 г.

Половина употребляемых в день жирных кислот должна быть ненасыщенной природы (растительные масла, рыбий жир).

Специально есть жиры не надо – их можно получить из привычных продуктов. А жирные продукты (те же масла) стоит употреблять в минимальных количествах.

При похудении можно снизить количество жиров до 0,8 г на кг тела (но не менее, чем до 30 г. жиров в сутки). При этом высчитывать количество жиров стоит не по имеющейся массе тела, а по желаемой массе, которая останется у Вас без лишней жировой прослойки (один из способов узнать % жира — с помощью специальных весов).

Ненасыщенные жирные кислоты – это кислоты, содержащие в углеродном скелете двойные связи.

В зависимости от степени ненасыщенности (количество двойных связей) их подразделяют на:

1. Мононенасыщенные (моноэтеноидные, моноеновые) кислоты – содержат одну двойную связь.

2. Полиненасыщенные (полиэтеноидные, полиеновые) кислоты – содержат более двух двойных связей. Некоторые авторы относят к полиеновым кислотам ненасыщенные жирные кислоты, содержащие три и более кратных (двойных) связей.

У ненасыщенных жирных кислот наблюдается геометрическая изомерия, обусловленная различием в ориентации атомов или групп относительно двойной связи. Если ацильные цепи располагаются с одной стороны от двойной связи, образуется цис- конфигурация, характерная, например, для олеиновой кислоты; если же они располагаются по разные стороны от двойной связи, то молекула находится в транс- конфигурации.


Таблица 6.3

Ненасыщенные жирные кислоты

Степень ненасыщенности Общие формулы Распространение Примеры
Моноеновые (мононена-сыщенные, моноэтеноидные) - одна двойная связь С n H 2n-1 COOH С m H 2m-2 О 2 С 1 m , C m:1 Жирная кислота, которая наиболее часто встречается в природных жирах Олеиновая (цис-9-октадеценовая) С 17 H 33 COOH, С 17 Н 33 СООН С 18 1 , С 18:1
Диеновые (диэтено-идные) – две двойные связи С n H 2n-3 COOH, С m H 2m-4 O 2 С 2 m; C m:2 Пшеница, арахис, семена хлопчатника, соя и многие растительные масла Линолевая С 17 H 31 COOH, C 18 Н 32 О 2 С 2 18; C 18:2
Триеновые (триэтеноидные – три двойные связи С n H 2 n -5 COOH, С m H 2 m -6 O 2 С 3 m; С m:3 Некоторые растения (розовое масло), минорная жирная кислота у животных Линоленовая С 17 H 29 COOH, С 18 Н 30 О 2 С 3 18; С 18:3
Тетраеновые (тетраэтеноидные) – четыре двойные связи) С n H 2 n -7 COOH, С m H 2 m -8 O 2 С 4 m; С m:4 Обнаруживается вместе с линолевой кислотой, особенно в арахисовом масле; важный компонент фосфолипидов животных Арахидоновая С 19 H 31 COOH, С 20 Н 32 О 2 С 4 20; С 20:4
Пентаеновые (пентаэтеноидные) – пять двойных связей С n H 2 n -9 COOH, С m H 2 m -10 O 2 С 5 m; С m:5 Рыбий жир, фосфолипиды мозга Эйкозапентаеновая (тимнодоновая) С 19 Н 29 СООН, С 20 Н 30 О 2 С 5 20; С 20:5 Клупанодоновая С 22:5 , С 5 20 Сокладоновая (склодоновая) С 5 24 , С 24:5 Гексокозапентаеновая С 5 26 , С 26:5


Продолжение табл. 6.3


К ненасыщенным жирным кислотам относятся оксикислоты , например рицинолевая кислота, имеющая гидроксильную группу у атома С 12:

С 21 Н 41 СООН

СН 3 – (СН 2) 7 – СН = СН – (СН 2) 11 СООН

Циклические ненасыщенные жирные кислоты

Молекулы циклических ненасыщенных кислот содержат мало реакционно-способные углеродные циклы. Характерными примерами являются гиднокарповая и хаульмугровая кислоты.

Гиднокарповая кислота СН=СН

> СН–(СН 2) 10 –СООН

СН 2 –СН 2

Хаульмугровая кислота СН = СН

> СН – (СН 2) 12 – СООН

СН 2 –СН 2

Эти кислоты входят в состав масел тропических растений, используемых для лечения проказы и туберкулеза.

Незаменимые (эссенциальные ) жирные кислоты

В 1928 году Эванс и Бэрр обнаружили, что у крыс получающих обезжиренный рацион, но содержащий витамины А и D, наблюдается замедление роста и снижение плодовитости, чешуйчатый дерматит, некроз хвоста, поражение мочевой системы. В своих работах они показали, что данный синдром можно лечить, добавляя в пищу незаменимые жирные кислоты.

Незаменимые (эссенциальные) жирные кислоты – это кислоты, которые не синтезируются организмом человека, а поступают в него с пищей. Незаменимыми кислотами являются:

Линолевая С 17 H 31 COOH (две двойные связи), С 2 18 ;

Линоленовая С 17 H 29 COOH (три двойные связи), С 3 18 ;

Арахидоновая С 19 H 31 COOH (четыре двойные связи), С 4 20 .

Линолевая и линоленовая кислоты не синтезируются в организме человека, арахидоновая – синтезируется из линолевой с помощью витамина В 6 .

Данные кислоты являются витамином F (от англ. fat – жир), входят в состав растительных масел.

У людей, в питании которых отсутствуют незаменимые жирные кислоты, развивается чешуйчатый дерматит, нарушение транспорта липидов. Для избежания этих нарушений, чтобы на долю незаменимых жирных кислот приходилось до 2 % от общей калорийности. Незаменимые жирные кислоты используются организмом в качестве предшественников биосинтеза простагландинов и лейкотриенов, участвуют в построении клеточных мембран, регулировании обмена веществ в клетках, кровяного давления, агрегации тромбоцитов, выводят из организма избыточное количество холестерина, уменьшая таким образом вероятность заболевая атеросклерозом, повышают эластичность стенок кровеносных сосудов. Наибольшей активностью обладает арахидоновая кислота, промежуточной – линолевая, активнсость линоленовой кислоты в 8–10 раз ниже линолевой кислоты.

Линолевая и арахидоновая кислоты являются w-6-кислотами,
a-линоленовая – w-3-кислотой, g-линоленовая – w-6-кислотой. Линолевая, арахидоновая и g-линоленовая кислоты входят в семейство омега-6.

Линолевая кислота входит в g-линоленовая состав многих растительных масел, содержится в пшенице, арахисе, семенах хлопчатника, сое. Арахидоновая кислота обнаруживается вместе с линолевой кислотой, особенно в арахисовом масле, является важным элементом фосфолипидов животных. a-Линоленовая кислота также обнаруживается вместе с линолевой кислотой, особенно в льняном масле,
g-линоленовая – характерна для розового масла.

Суточная потребность в линолевой кислоте 6–10 г, ее суммарное содержание в жирах пищевого рациона должно составлять не менее 4 % от общей калорийности. Для здорового организма соотношение жирных кислот должно быть сбалансированным: 10–20 % полиненасыщенных, 50–60 % мононенасыщенных и 30 % насыщенных. Для людей пожилого возраста и больных сердечно-сосудистыми заболеваниями содержание линолевой кислоты должно составлять 40 % от общего содержания жирных кислот. Соотношение полиненасыщенных и насыщенных кислот 2: 1, соотношение линолевой и линоленовой кислот 10: 1.

Для оценки способность жирных кислот обеспечивать синтез структурных компонентов клеточных мембран используется коэффициент эффективности метаболизации эссенциальных жирных кислот (КЭМ), который показывает отношение количества арахидоновой кислоты (главного представителя ненасыщенных жирных кислот в мембранных липидах) к сумме полиненасыщенных жирных кислот с 20 и 22 атомами углерода:

Простые липиды (многокомпонентные )

Простые липиды представляют собой сложные эфиры спиртов и высших жирных кислот. К ним относятся триацилглицериды (жиры), воски, стерины и стериды.

Воски

Воски – это сложные эфиры высших одноосновных жирных кислот () и первичных одноатомных высокомолекулярных спиртов (). Химически малоактивны, устойчивы к действию бактерий. Ферменты их не расщепляют.

Общая формула воска:

R 1 –O–CO–R 2 ,

где R 1 O - – остаток высокомолекулярного одноатомного первичного спирта; R 2 CO – остаток жирной кислоты, преимущественно с четным числом атомов С.

Воски широко распространены в природе. Воски образуют защитное покрытие на листьях, стеблях, плодах, предохраняя их от смачивания водой, высыхания, действия микроорганизмов. Воски образуют защитную смазку на коже, шерсти, перьях, содержатся в наружном скелете насекомых. Они являются важным компонентом воскового налета виноградной ягоды – прюина. В оболочках семян сои содержание воска 0,01 % от массы оболочки, в оболочках семян подсолнечника – 0,2 %, в оболочке риса – 0,05 %.

Характерным примером воска является пчелиный воск, содержащий спирты с 24–30 атомами С (мирициловый спирт C 30 H 61 OH), кислоты CH 3 (CH 2) n COOH, где n = 22–32, и пальмитиновую кислоту (C 30 H 61 – O–СO–C 15 H 31).

Спермацет

Примером животного воска является воск спермацет. Сырой (технический) спермацет получают из головной спермацетовой подушки кашалотов (или других зубатых китов). Сырой спермацет состоит из белых чешуйчатых кристаллов спермацета и спермацетового масла (спермоля).

Чистый спермацет представляет собой эфир цетилового спирта (C 16 H 33 OH) и пальмитиновой кислоты (С 15 Н 31 СО 2 Н). Формула чистого спермацета С 15 Н 31 СО 2 C 16 H 33 .

Спермацет применяется в медицине как компонент мазей, обладающих заживляющим действием.

Спермоль – жидкий воск, светло-желтая маслянистая жидкость, смесь жидких эфиров, содержащих олеиновую кислоту C 17 H 33 СООН и олеиновый спирт C 18 H 35 . Формула спермоля C 17 H 33 СО–О–C 18 H 35. Температура плавления жидкого спермацета 42…47 0 С, спермацетового масла – 5…6 0 С. Спермацетовое масло содержит больше ненасыщенных жирных кислот (иодное число 50–92), чем спермацет (иодное число 3–10).

Стерины и стериды

Стерины (стеролы ) – это высокомолекулярные полициклические спирты, неомыляемая фракция липидов. Представителями являются: холестерин или холестерол, оксихолестерин или оксихолестерол, дегидрохолестерин или дегидрохолестерол, 7-дегидрохолестерин или 7-дегидрохолестерол, эргостерин или эргостерол.

В основе строения стеринов лежит кольцо циклопентанпергидрофенантрена, содержащее полностью гидрированный фенантрен (три циклогексановых кольца) и циклопентан.

Стериды – сложные эфиры стеринов – являются омыляемой фракцией.

Стероиды – это биологически активные вещества, основой строения которых являются стерины.

В ХУП веке из желчных камней был впервые выделен холестерин (от греч. сhole – желчь).

СН 3 CH - СН 2 - СН 2 – СН 2 - CH




Он содержится в нервной ткани, мозге, печени, является предшественником биологически активных соединений стероидов (например: желчных кислот, стероидных гормонов, витаминов группы D) и биоизолятором, защищающим структуры нервных клеток от электрического заряда нервных импульсов. Холестерин в организме находится в свободной (90 %) форме и в виде эфиров. Имеет эндо- и экзогенную природу. Эндогенный холестерин синтезируется в организме человека (70–80 % холестерина синтезируется в печени и других тканях). Экзогенный холестерин – это холестерин, поступающий с пищей.

Избыток холестерина вызывает появление атеросклеротических бляшек на стенках артерий (атеросклероз). Нормальный уровень
200 мг холестерина на 100 мл крови. При повышении уровня холестерина в крови возникает опасность заболевания атеросклерозом.

Суточное потребление холестерина с пищей не должно превышать 0,5 г.

Большее количество холестерина содержится в яйцах, сливочном масле, субпродуктах. У рыб высокое содержание холестерина обнаружено в икре (290–2200 мг/100 г) и молоках (250–320 мг/100 г).

Жиры (ТАГ, триацилглицериды )

Жиры представляют собой сложные эфиры глицерина и высших жирных кислот, являются омыляемой фракцией.

Общая формула ТАГ:

CH 2 – O – CO – R 1

CH – O – CO – R 2

CH 2 – O – CO – R 3 ,

где R 1 , R 2 , R 3 – остатки насыщенных и ненасыщенных жирных кислот.

В зависимости от состава жирных кислот ТАГ бывают простыми (имеют одинаковые остатки жирных кислот) и смешанными (имеют разные остатки жирных кислот). Природные жиры и масла содержат в основном смешанные ТАГ.

Жиры подразделяются на твердые и жидкие. Твердые жиры содержат насыщенные карбоновые кислоты, к ним относятся животные жиры. Жидкие жиры содержат ненасыщенные кислоты, к ним относятся растительные масла, рыбий жир.

Для жиров рыб характерны полиеновые жирные кислоты, имеющие линейную цепь и содержащие 4–6 двойных связей.

Высокая биологическая ценность рыбьего жира определяется тем, что рыбий жир содержит:

Биологически активные полиеновые жирные кислоты (докозагексаеновая, эйкозапентаеновая). Полиеновые кислоты уменьшают риск возникновения тромбоза, атеросклероза;

Витамин А;

Витамин Д;

Витамин Е;

Микроэлемент селен.

Жиры рыб подразделяются на низковитаминные и высоковитаминные. В низковитаминных рыбьих жирах содержание витамина А меньше 2000 МЕ в 1 г., в высоковитаминных – превышает 2000 МЕ в 1 г. Кроме того, промышленным способом вырабатывают концентраты витамина А – жиры, в которых содержание витамина А > 10 4 МЕ
в 1 г.

Показатели качества жиров

Для оценки качества жиров используются следующие физико-химические константы.

1. Кислотное число.

Характерным свойством жиров является их способность к гидролизу. Продуктами гидролиза являются свободные жирные кислоты, глицерин, моноацилглицериды и диацилглицериды.

Ферментативный гидролиз жиров протекает с участием липазы. Это обратимый процесс. Для оценки степени гидролиза и количества свободных жирных кислот определяют кислотное число.

Кислотноечисло – это количество миллиграммов КОН, идущее на нейтрализацию всех свободных жирных кислот, которые содержатся в 1 г жира. Чем больше кислотное число, тем выше содержание свободных жирных кислот, тем интенсивнее идет процесс гидролиза. Кислотное число возрастает при хранении жира, т. е. является показателем гидролитической порчи.

Кислотное число медицинского жира должно быть не более 2,2, витаминизированного жира, предназначенного для ветеринарных целей, – не более 3, пищевого жира – 2,5.

2. Пероксидное число

Пероксидное число характеризует процесс окислительной порчи жиров, в результате которой образуются пероксиды.

Пероксидное число определяется количеством граммов иода, выделенным из иодида калия в присутствии ледяной уксусной кислоты, выделяя из него I 2 ; образование свободного йода фиксируется с помощью крахмального клейстера:

ROOH + 2KI + H 2 O = 2KOH + I 2 + ROH.

Для повышения чувствительности исследования определение пероксидного числа проводят в кислой среде, действуя на пероксиды не иодистым калием, а иодистоводородной кислотой, образующейся из иодида калия при воздействии кислоты:

KI + CH 3 COOH = HI + CH 3 COOK

ROOH + 2HI = I 2 + H 2 O + ROH

Выделившийся иод немедленно оттитровывают раствором тиосульфата натрия.

3. Водородное число

Водородное число, так же, как и иодное, является показателем степени ненасыщенности жирных кислот.

Водородное число – количество миллиграммов водорода, необходимое для насыщения 100 г исследуемого жира.

4. Число омыления

Число омыления – это количество миллиграммов КОН, необходимое для нейтрализации всех свободных и связанных кислот, содержащихся в 1 г жира:

CH 2 OCOR 1 CH 2 - OH

CHOCOR 2 + 3KOH CH - OH + R 1 COOK +

CH 2 OCOR 3 CH 2 - OH

связанные жирные кислоты

R 2 COOK + R 3 COOK

RCOOH + KOH –––® RCOOK + H 2 O

свободные

жирные кислоты

Число омыления характеризует природу жира: чем меньше молярная масса ТАГ, тем больше число омыления. Число омыления характеризует среднюю молекулярную массу глицеридов и зависит от молекулярной массы жирных кислот.

Число омыления и кислотное число характеризуют степень гидролитической порчи жира. На величину числа омыления влияет содержание неомыляемых липидов.

5. Альдегидное число

Альдегидное число характеризует окислительную порчу жиров, содержание альдегидов в жире. Альдегидное число определяется фотоколориметрическим методом, основанном на взаимодействии карбонильных соединений с бензидином; определение оптической плотности проводится при длине волны 360 нм. Для построения калибровочной кривой используется коричный альдегид (b-фенилакролеин C 6 H 5 CH=CHCHO). Альдегидное число выражается в миллиграммах коричного альдегида на 100 г жира. Альдегидное число – показатель качества вяленой рыбы, а также второго этапа окислительной порчи жиров.

6. Эфирное число

Эфирное число – это количество милиграммов КОН, необходимое для нейтрализации освобождающихся при омылении эфирных связей жирных кислот (связанных жирных кислот) в 1 г жира. Эфирное число определяют по разности числа омыления и кислотного числа. Эфирное число характеризует природу жира.

В природе обнаружено свыше 200 жирных кислот, которые входят в состав липидов микроорганизмов, растений и животных.

Жирные кислоты – алифатические карбоновые кислоты (рисунок 2). В организме могут находиться как в свободном состоянии, так и выполнять роль строительных блоков для большинства классов липидов.

Все жирные кислоты, входящие в состав жиров, делят на две группы: насыщенные и ненасыщенные. Ненасыщенные жирные кислоты, имеющие две и более двойных связей, называют полиненасыщенными. Природные жирные кислоты весьма разнообразны, однако имеют ряд общих черт. Это монокарбоновые кислоты, содержащие линейные углеводородные цепи. Почти все они содержат четное число атомов углерода (от 14 до 22, чаще всего встречаются с 16 или 18 атомами углерода). Гораздо реже встречаются жирные кислоты с более короткими цепями или с нечетным числом атомов углерода. Содержание ненасыщенных жирных кислот в липидах, как правило, выше, чем насыщенных. Двойные связи, как правило, находятся между 9 и 10 атомами углерода, почти всегда разделены метиленовой группой и имеют цис-конфигурацию.

Высшие жирные кислоты практически нерастворимы в воде, но их натриевые или калиевые соли, называемые мылами, образуют в воде мицеллы, стабилизируемые за счет гидрофобных взаимодействий. Мыла обладают свойствами поверхностно-активных веществ.

Жирные кислоты отличаются:

– длиной их углеводородного хвоста, степенью их ненасыщенности и положением двойных связей в цепях жирных кислот;

– физико-химическими свойствами. Обычно насыщенные жирные кислоты при температуре 22 0 С имеют твердую консистенцию, тогда как ненасыщенные представляют собой масла.

Ненасыщенные жирные кислоты имеют более низкую температуру плавления. Полиненасыщенные жирные кислоты быстро окисляются на открытом воздухе, чем насыщенные. Кислород реагирует с двойными связями с образованием пероксидов и свободных радикалов;

Таблица 1 – Основные карбоновые кислоты, входящие в состав липидов

Число двойных связей

Наименование кислоты

Структурная формула

Насыщенные

Лауриновая

Миристиновая

Пальмитиновая

Стеариновая

Арахиновая

СН 3 –(СН 2) 10 –СООН

СН 3 –(СН 2) 12 –СООН

СН 3 –(СН 2) 14 –СООН

СН 3 –(СН 2) 16 –СООН

СН 3 –(СН 2) 18 –СООН

Ненасыщенные

Олеиновая

Линолевая

Линоленовая

Арахидовая

СН 3 –(СН 2) 7 –СН=СН–(СН 2) 7 –СООН

СН 3 –(СН 2) 4 –(СН=СН–СН 2) 2 –(СН 2) 6 –СООН

СН 3 –СН 2 –(СН=СН–СН 2) 3 –(СН 2) 6 –СООН

СН 3 –(СН 2) 4 –(СН=СН–СН 2) 4 –(СН 2) 2 –СООН

В высших растениях присутствуют, в основном, пальмитиновая кислота и две ненасыщенные кислоты – олеиновая и линолевая. Доля ненасыщенных жирных кислот в составе растительных жиров очень высока (до 90 %), а из предельных лишь пальмитиновая кислота содержится в них в количестве 10-15 %.

Стеариновая кислота в растениях почти не встречается, а содержится в значительном количестве (25 % и более) в некоторых твердых животных жирах (жир баранов и быков) и маслах тропических растений (кокосовое масло). Лауриновой кислоты много в лавровом листе, миристиновой – в масле мускатного ореха, арахиновой и бегеновой – в арахисовом и соевом маслах. Полиненасыщенные жирные кислоты – линоленовая и линолевая – составляют главную часть льняного, конопляного, подсолнечного, хлопкового и некоторых других растительных масел. Жирные кислоты оливкового масла на 75% представлены олеиновой кислотой.

В организме человека и животных не могут синтезироваться такие важные кислоты, как линолевая, линоленовая. Арахидоновая – синтезируется из линолевой. Поэтому они должны поступать в организм с пищей. Эти три кислоты получили название незаменимых жирных кислот. Комплекс этих кислот называют витамином F. При длительном отсутствии их в пище у животных наблюдается отставание в росте, сухость и шелушение кожи, выпадение шерсти. Описаны случаи недостаточности незаменимых жирных кислот и у человека. Так, у детей грудного возраста, получающих искусственное питание с незначительным содержанием жиров, может развиться чешуйчатый дерматит, т.е. проявляются признаки авитаминоза.

В последнее время большое внимание уделяется жирным кислотам Омега-3. Эти кислоты обладают сильным биологическим действием – уменьшают слипание тромбоцитов, тем самым предупреждают инфаркты, снижают артериальное давление, уменьшают воспалительные процессы в суставах (артриты), необходимы для нормального развития плода у беременных. Эти жирные кислоты содержатся в жирных сортах рыб (скумбрия, лосось, семга, норвежская сельдь). Рекомендуется употреблять морскую рыбу 2-3 раза в неделю.

Номенклатура жиров

Нейтральные ацилглицеролы служат главными составными частями природных жиров и масел, чаще всего это смешанные триацилглицеролы. По происхождению природные жиры делят на животные и растительные. В зависимости от жирно-кислотного состава жиры и масла по консистенции бывают жидкими и твердыми. Животные жиры (баранье, говяжье, свиное сало, молочный жир) обычно содержат значительное количество насыщенных жирных кислот (пальмитиновой, стеариновой и др.), благодаря чему при комнатной температуре они твердые.

Жиры, в состав которых входит много ненасыщенных кислот (олеиновая, линолевая, линоленовая и др.), при обычной температуре жидкие и называются маслами.

Жиры, как правило, содержатся в животных тканях, масла – в плодах и семенах растений. Особенно высоко содержание масел (20-60 %) в семенах подсолнечника, хлопчатника, сои, льна. Семена этих культур используются в пищевой промышленности для получения пищевых масел.

По способности высыхать на воздухе масла подразделяются: на высыхающие (льняное, конопляное), полувысыхающие (подсолнечное, кукурузное), невысыхающие (оливковое, касторовое).

Физические свойства

Жиры легче воды и нерастворимы в ней. Хорошо растворимы в органических растворителях, например, в бензине, диэтиловом эфире, хлороформе, ацетоне и т.д. Температура кипения жиров не может быть определена, поскольку при нагревании до 250 о С они разрушаются с образованием из глицерина при его дегидратации сильно раздражающего слизистые оболочки глаз альдегида  акролеина (пропеналя).

Для жиров прослеживается довольно четкая связь химического строения и их консистенции. Жиры, в которых преобладают остатки насыщенных кислот – твёрдые (говяжий, бараний и свиной жиры). Если в жире преобладают остатки ненасыщенных кислот, он имеет жидкую консистенцию. Жидкие растительные жиры называется маслами (подсолнечное, льняное, оливковое и т.д. масла). Организмы морских животных и рыбы содержат жидкие животные жиры. В молекулы жиров мазеобразной (полутвёрдой) консистенции входят одновременно остатки насыщенных и ненасыщенных жирных кислот (молочный жир).

Химические свойства жиров

Триацилглицеролы способны вступать во все химические реакции, свойственные сложным эфирам. Наибольшее значение имеет реакция омыления, она может происходить как при ферментативном гидролизе, так и при действии кислот и щелочей. Жидкие растительные масла превращают в твердые жиры при помощи гидрогенизации. Этот процесс широко используется для изготовления маргарина и кулинарного жира.

Жиры при сильном и продолжительном взбалтывании с водой образуют эмульсии – дисперсные системы с жидкой дисперсной фазой (жир) и жидкой дисперсионной средой (водой). Однако эти эмульсии нестойки и быстро разделяются на два слоя – жир и воду. Жиры плавают над водой, поскольку их плотность меньше плотности воды (от 0,87 до 0,97).

Гидролиз. Среди реакций жиров особое значение имеет гидролиз, который можно осуществить как кислотами, так и основаниями (щелочной гидролиз называют омылением):

Омыляемые липиды 2

Простые липиды 2

Жирные кислоты 3

Химические свойства жиров 6

АНАЛИТИЧЕСКАЯ ХАРАКТЕРИСТИКА ЖИРОВ 11

Сложные липиды 14

Фосфолипиды 14

Мыла и детергенты 16

Гидролиз жиров идет постепенно; например, при гидроли­зе тристеарина получается сначала дистеарин, затем моносте­арин и, наконец, глицерин и стеариновая кислота.

Практически гидролиз жиров производят или перегретым паром, или же нагреванием в присутствии серной кислоты или щелочей. Превосходными катализаторами гидролиза жиров являются сульфокислоты, получаемые сульфированием смеси непредельных жирных кислот с ароматическими углеводоро­дами (контакт Петрова ). В семенах клещевины находится особый фермент - липаза , ускоряющий гидролиз жиров. Ли­паза широко применяется в технике для каталитического гид­ролиза жиров.

Химические свойства

Химические свойства жиров определяются сложноэфирным строением молекул триглицеридов и строением и свойствами углеводородных радикалов жирных кислот , остатки которых входят в состав жира.

Как сложные эфиры жиры вступают, например, в следующие реакции:

– Гидролиз в присутствии кислот (кислотный гидролиз )

Гидролиз жиров может протекать и биохимическим путем под действием фермента пищеварительного тракта липазы.

Гидролиз жиров может медленно протекать при длительном хранении жиров в открытой упаковке или термической обработке жиров в условиях доступа паров воды из воздуха. Характеристикой накопления в жире свободных кислот, придающих жиру горечь и даже токсичность является «кислотное число»: число мг КОН, пошедшее на титрование кислот в 1г жира.

Омыление:

Наиболее интересными и полезными реакциями углеводородных радикалов являются реакции по двойным связям:

Гидрогенизация жиров

Растительные масла (подсолнечное, хлопковое, соевое) в присутствии катализаторов (например, губчатый никель) при 175-190 о С и давлении 1,5-3 атм гидрируются по двойным С = С связям углеводородных радикалов кислот и превращаются в твёрдый жир – саломас . При добавлении к нему так называемых отдушек для придания соответствующего запаха и яиц, молока, витаминов для улучшения питательных качеств получают маргарин . Саломас используется также в мыловарении, фармации (основы для мазей), косметике, для изготовления технических смазок и т.д.

Присоединение брома

Степень ненасыщенности жира (важная технологическая характеристика) контролируется по «йодному числу» : число мг йода, пошедшее на титрование 100 г жира в процентах (анализ с бисульфитом натрия).

Окисление

Окисление перманганатом калия в водном растворе приводит к образованию предельных дигидроксикислот (реакция Вагнера)

ПРОГОРКАНИЕ

При хранении растительные масла, животные жиры, а также жиросодержащие продукты (мука, крупа, кондитерские изделия, мясные продукты) под влиянием кислорода воздуха, света, ферментов, влаги приобретают неприятный вкус и запах. Иными словами, жир прогоркает.

Прогоркание жиров и жиросодержащих продуктов ­– результат сложных химических и биохимических процессов, протекающих в липидном комплексе.

В зависимости от характера основного процесса, протекающего при этом, различают гидролитическое и окислительное прогоркание. Каждый из них может быть разделен на автокаталитическое (неферментативное) и ферментативное (биохимическое) прогоркание.

ГИДРОЛИТИЧЕСКОЕ ПРОГОРКАНИЕ

При гидролитическом прогоркании происходит гидролиз жира с образованием глицерина и свободных жирных кислот.

Неферментативный гидролиз протекает с участием растворенной в жире воды, и скорость гидролиза жира при обычных температурах невелика. Ферментативный гидролиз происходит при участии фермента липазы на поверхности соприкосновения жира и воды и возрастает при эмульгировании.

В результате гидролитического прогоркания увеличивается кислотность, появляется неприятный вкус и запах. Особенно это сильно выражено при гидролизе жиров (молочного, кокосового и пальмового), содержащих низко- и среднемолекулярные кислоты, такие как масляную, валериановую, капроновую. Высокомолекулярные кислоты не имеют вкуса и запаха, а повышение их содержания не приводит к изменению вкуса масел.

ОКИСЛИТЕЛЬНОЕ ПРОГОРКАНИЕ

Наиболее распространенным видом порчи жиров в процессе хранения является окислительное прогоркание. В первую очередь окислению подвергаются свободные, а не связанные в триацилглицеролах ненасыщенные жирные кислоты. Процесс окисления может происходить неферментативным и ферментативным путями.

В результате неферментативного окисления кислород присоединяется к ненасыщенным жирным кислотам по месту двойной связи с образованием циклической перекиси, которая распадается с образованием альдегидов, придающих жиру неприятный запах и вкус:

Также в основе неферментативного окислительного прогоркания лежат цепные радикальные процессы, в которых участвуют кислород и ненасыщенные жирные кислоты.

Под действием перекисей и гидроперекисей (первичных продуктов окисления) происходит дальнейший распад жирных кислот и образование вторичных продуктов окисления (карбонилсодержащих): альдегидов, кетонов и других неприятных на вкус и запах веществ, вследствие чего жир прогоркает. Чем больше двойных связей в жирной кислоте, тем выше скорость ее окисления.

При ферментативном окислении этот процесс катализируется ферментом липоксигеназой с образованием гидроперекисей. Действие липоксигеназы сопряжено с действием липазы, которая предварительно гидролизует жир.

АНАЛИТИЧЕСКАЯ ХАРАКТЕРИСТИКА ЖИРОВ

Кроме температуры плавления и затвердевания, для ха­рактеристики жиров применяются следующие величины: кислотное число, перекисное число, число омыления, йодное число.

Природные жиры нейтральны. Однако при переработке или хранении вследствие процессов гидролиза или окисления образуются свободные кислоты, количество которых непостоянно

Под действием ферментов липазы и липоксигеназы изменяется качество жиров и масел, которое характеризуется следующими показателями или числами:

Кислотное число (К.ч.) – это количество миллиграммов гидроксида калия, необходимого для нейтрализации свободных жирных кислот в 1 г жира.

При хранении масла наблюдается гидролиз триацилглицеролов, это приводит к накоплению свободных жирных кислот, т.е. к возрастанию кислотности. Повышение К.ч. указывает на снижение его качества. Кислотное число является гостированным показателем масла и жира.

Йодное число (Й.ч.) – это количество граммов йода, присоединившегося по месту двойных связей к 100 г жира:

Йодное число позволяет судить о степени ненасыщенности масла (жира), о склонности его к высыханию, прогорканию и другим изменениям, происходящим при хранении. Чем больше содержится в жире ненасыщенных жирных кислот, тем выше йодное число. Уменьшение йодного числа в процессе хранения масла является показателем его порчи. Для определения йодного числа применяют растворы хлорида иода IC1, бромида иода IBr или иода в растворе сулемы, которые бо­лее реакционноспособны, чем сам иод. Йодное число является мерой ненасыщенности кислот жиров. Оно важно для оценки качества высыхающих масел.

Перекисное число (П.ч.) показывает количество перекисей в жире, выражают его в процентах йода, выделенного из йодистого калия перекисями, образовавшимися в 1 г жира.

В свежем жире перекиси отсутствуют, но при доступе воздуха они появляются сравнительно быстро. В процессе хранения перекисное число увеличивается.

Число омыления (Ч.о. ) – равно числу миллиграммов гидроксида калия, расходующихся при омылении 1 г жира кипячением последнего с избытком гидроксида калия в спиртовом раство­ре. Число омыления чистого триолеина равно 192. Высокое число омыления указывает на присутствие кислот с «меньши­ми молекулами». Малые числа омыления указывают на при­сутствие более высокомолекулярных кислот или же неомыляемых веществ.

Полимеризация масел. Весьма важными являются ре­акции автоокисления и полимеризации масел. По этому при­знаку растительные масла делятся на три категории: высы­хающие, полувысыхающие и невысыхающие.

Высыхающие масла в тонком слое обладают способностью образовывать на воздухе эластичные, блестящие, гибкие и прочные пленки, нерастворимые в органических растворите­лях, устойчивые к внешним воздействиям. На этом свойстве основано использование этих масел для приготовления лаков и красок. Наиболее часто применяемые высыхающие масла приведены в табл. 34.

Таблица 34. Характеристики высыхающих масел

Йодное число

паль­мити­новая

стеа­рино­вая

олеи­новая

лино- левая

лино- лено- вая

элео- стеари- новая

Тунговое

Периллевое


Основной характерной чертой высыхающих масел являет­ся высокое содержание непредельных кислот. Для оценки ка­чества высыхающих масел применяют йодное число (оно дол­жно быть не менее 140).

Процесс высыхания масел заключается в окислительной полимери­зации. Все ненасыщенные эфиры жирных кислот и их глицериды окис­ляются на воздухе. По-видимому, процесс окисления представляет собой цепную реакцию, приводящую к неустойчивой гидроперекиси, которая разлагается с образованием окси- и кетокислот.

Высыхающие масла, содержащие глицериды ненасыщенных кислот с двумя или тремя двойными связями, служат для приготовления оли­фы. Для получения олифы льняное масло нагревают до 250-300 °С в присутствии катализаторов.

Полу высыхающие масла (подсолнечное, хлопковое) отличаются от высыхающих меньшим содержанием непредельных кислот (йодное чис­ло 127-136).

Невысыхающие масла (оливковое, миндальное) имеют йодное число ниже 90 (например, для оливкового масла 75-88).

Воски

Это сложные эфиры высших жирных кислот и высших одноатомных спиртов жирного (реже ароматического) ряда.

Воски являются твердыми соединениями с ярко выраженными гидрофобными свойствами. Природные воски содержат также некоторое количество свободных жирных кислот и высокомолекулярных спиртов. В состав восков входят как обычные, содержащиеся в жирах, – пальмитиновая, стеариновая, олеиновая и др., так и жирные кислоты, характерные для восков, имеющие гораздо большие молекулярные массы, – карноубовая С 24 Н 48 О 2 , церотиновая С 27 Н 54 О 2 , монтановая С 29 Н 58 О 2 и др.

Среди высокомолекулярных спиртов, входящих в состав восков, можно отметить цетиловый – СН 3 –(СН 2) 14 –СН 2 ОН, цериловый – СН 3 –(СН 2) 24 –СН 2 ОН, мирициловый СН 3 –(СН 2) 28 –СН 2 ОН.

Воски встречаются как в животных, так и в растительных организмах и выполняют, главным образом, защитную функцию.

В растениях они покрывают тонким слоем листья, стебли и плоды, тем самым, предохраняя их от смачивания водой, высыхания, механических повреждений и поражения микроорганизмами. Нарушение этого налета приводит к быстрой порче плодов при их хранении.

Например, значительное количество воска выделяется на поверхности листьев пальмы, произрастающей в Южной Америке. Этот воск, называемый карноубским, является, в основном, церотиново-мирициловым эфиром:

,

имеет желтый или зеленоватый цвет, очень тверд, плавится при температуре 83-90 0 С, идет на выделку свечей.

Среди животных восков наибольшее значение имеет пчелиный воск, под его покровом хранится мед и развиваются личинки пчелы. В пчелином воске преобладает пальмитиново-мирициловый эфир:

а также высокое содержание высших жирных кислот и различных углеводородов, плавится пчелиный воск при температуре 62-70 0 С.

Другими представителями воска животных является ланолин и спермацет. Ланолин предохраняет волосы и кожу от высыхания, очень много его содержится в овечьей шерсти.

Спермацет – воск, добывающий из спермацетового масла черепных полостей кашалота, состоит, в основном, (на 90%) из пальмитиново-цетилового эфира:

твердое вещество, его температура плавления 41-49 0 С.

Различные воска широко применяют для изготовления свечей, помад, мыла, разных пластырей.

Насыщенные жирные кислоты (НЖК), наиболее представленные в пище, делятся на короткоцепочечные (4… 10 атомов углерода - масляная, капроновая, каприловая, каприновая), среднецепочечные (12… 16 атомов углеро­да - лауриновая, миристиновая, пальмитиновая) и длинноцепочечные (18 атомов углерода и более - стеариновая, арахидиновая).

Насыщенные жирные кислоты с короткой длиной углеродной цепи практи­чески не связываются с альбуминами в крови, не депонируются в тканях и не включаются в состав липопротеинов - они быстро окисляются с образованием кетоновых тел и энергии.

Так же они выполняют ряд важных биологических функций, например, масляная кислота участвует в генетической регуляции, воспаления и иммунного ответа на уровне слизистой оболочки кишечника, а также обеспечивает клеточную дифференцировку и апоптоз.

Каприновая кислота является предшественником монокаприна — соединения с антивирусной активностью. Избыточное поступление короткоцепочечных жирных кислот может привести к развитию метаболического ацидоза.

Насыщенные жирные кислоты с длинной и средней углеродной цепью, напротив, включаются в состав липопротеинов, циркулируют в крови, запасаются в жировых депо и используются для синтеза других липоидных соединений в организме, например холестери­на Кроме того, для лауриновой кислоты показана способность инактивировать ряд микроорганизмов, в частности Helicobacter pylory, а также грибки и вирусы за счет разрыва липидного слоя их биомембран.

Миристиновая и лауриновая жирные кислоты сильно повышают уровень холестерина в сыворотке крови и поэтому ассоциируются с максимальным риском развития ате­росклероза.

Пальмитиновая кислота также ведет к повышенному синтезу липопротеинов. Она является основной жирной кислотой, связывающей кальций (в составе жирных молочных продуктов) в неусваиваемый комплекс, омыляя его.

Стеариновая кислота, так же как и короткоцепочечные насыщенные жирные кислоты, практически не влияет на уровень холестерина в крови, более того - она способна снижать усвояемость холесте­рина в кишечнике за счет уменьшения его растворимости.

Ненасыщенные жирные кислоты

Ненасыщенные жирные кислоты подразделяют по степени ненасыщенности на моно ненасыщенные жирные кислоты (МНЖК) и поли ненасыщенные жирные кислоты (ПНЖК).

Мононенасыщенные жирные кислоты имеют одну двойную связь. Основным их представителем в рационе является олеиновая кислота. Ее основными пищевыми источниками служат оливковое и арахисовое масло, свиной жир. К МНЖК относятся также эруковая кислота, составляющая 1/3 от состава жирных кислот в рапсовом масле, и пальмитолеиновая кислота, присутствующая в рыбьем жире.

К ПНЖК относятся жирные кислоты, имеющие несколько двойных связей: линолевая, линоленовая, арахидоновая, эйкозапентаеновая, докозагексаеновая. В питании их основными источниками являются растительные масла, рыбий жир, орехи, семена, бобовые. Подсолнечное, соевое, кукурузное и хлопковое масла являются основными источниками линолевой кислоты в питании. В рапсовом, соевом, горчичном, кунжутном масле содержатся значимые количества линолевой и линоленовой кислот, причем соотношение их различно - от 2:1 в рапсовом, до 5:1 в соевом.

В организме человека ПНЖК выполняют биологически важные функции, связанные с организацией и функционированием биомембран и синтезом тканевых регуляторов. В клетках происходит сложный процесс синтеза и взаимного превращения ПНЖК: линолевая кислота способна трансформироваться в арахидоновую с последующим включением ее в биомембраны или синтезом лейкотриенов, тромбоксанов, простагландинов. Линоленовая кислота играет важную роль в нормальном развитии и функционировании миелиновых волокон нервной системы и сетчатки глаза, входя в состав структурных фосфолипидов, а также содержится в значительных количествах в сперматозоидах.

Полиненасыщенные жирные кислоты состоят из двух основных семейств: производные линолевой кислоты, относящиеся к омега-6 жирным кислотам, и производные линоленовой кислоты — к омега-3 жирным кислотам. Именно соотношение этих семейств при условии общей сбалансированности поступления жира становится доминирующим с позиций оптимизации липидного обмена в организме за счет модификации жирно-кислотного состава пищи.

Линоленовая кислота в организме человека превращается в длинноцепочечные n-3 ПНЖК - эйкозапентаеновую (ЭПК) и докозагексаеновую (ДГК). Эйкозапентаеновая кислота определяется наряду с арахидоновой в структуре биомембран в количестве прямо пропорциональном ее содержанию в пище. При высоком уровне поступления с пищей линолевой кислоты относительно линоленовой (или ЭПК) повышается общее количество арахидоновой кислоты, включенной в биомембраны, что изменяет их функциональные свойства.

В результате использования организмом ЭПК для синтеза биологически активных соединений образуются эйкозаноиды, физиологические эффекты которых (например, снижение скорости тромбообразования) могут быть прямо противоположными действию эйкозаноидов, синтезируемых из арахидоновой кислоты. Показано также, что в ответ на воспаление ЭПК трансформируется в эйкозаноиды, обеспечивая более тонкую по сравнению с эйкозаноидами — производными арахидоновой кислоты, регуляцию фазы воспаления и тонуса сосудов.

Докозагексаеновая кислота найдена в высоких концентрациях в мембранах клеток сетчатки, которые поддерживаются на этом уровне вне зависимости от поступления омега-З ПНЖК с питанием. Она играет важную роль в регенерации зрительного пигмента родопсина. Также высокие концентрации ДГК обнаруживаются в мозге и нервной системе. Эта кислота используется нейронами для модификаций физических характеристик собственных биомембран (таких, как текучесть) в зависимости от функциональных потребностей.

Последние достижения в области нутриогеномики подтверждают участие ПНЖК семейства омега-3 в регуляции экспрессии генов, участвующих в обмене жиров и фазах воспаления, за счет активации факторов транскрипции.

В последние годы делаются попытки определить адекватные уровни поступления омега-3 ПНЖК с питанием. В частности, показано, что для взрослого здорового человека употребление в составе пищи 1,1… 1,6 г/сут линоленовой кислоты полностью покрывает физиологические потребности в этом семействе жирных кислот.

Основными пищевыми источниками ПНЖК семейства омега-3 являются льняное масло, грецкие орехи и жир морских рыб.

В настоящее время оптимальным соотношением в питании ПНЖК различных семейств считается следующее: омега-6: омега-3 = 6…10:1.

Основные пищевые источники линоленовой кислоты

Продукт Порция, г Содержание линоленовой кислоты, г
Льняное масло 15 (1 столовая ложка) 8,5
Грецкий орех 30 2,6
Рапсовое масло 15 (1 столовая ложка) 1,2
Соевое масло 15(1 столовая ложка) 0,9
Горчичное масло 15(1 столовая ложка) 0,8
Оливковое масло 15 (1 столовая ложка) 0,1
Брокколи 180 0,1

Основные пищевые источники ПНЖК семейства омега-3

    Насыщенные и ненасыщенные жирные кислоты, жироподобные вещества и их роль в нормальном функционировании человеческого организма. Нормы потребления этих веществ.

    Теория адекватного питания как научная основа для рационального питания.

    Витамины: авитаминоз и гиповитаминоз. Классификационные признаки витаминов.

  1. Насыщенные и ненасыщенные жирные кислоты, жироподобные вещества и их роль в нормальном функционировании человеческого организма. Нормы потребления этих веществ.

Жиры - органические соединения, входящие в состав животных и растительных тканей и состоящие в основном из триглицеридов (сложных эфиров глицерина и различных жирных кислот). Кроме того, в состав жиров входят вещества, обладающие высокой биологической активностью: фосфатиды, стерины, некоторые витамины. Смесь различных триглицеридов составляет так называемый нейтральный жир. Жир и жироподобные вещества объединяют обычно под названием липиды.

У человека и животных наибольшее количество жиров находится в подкожной жировой клетчатке и жировой ткани, располагающейся в сальнике, брыжейке, забрюшинном пространстве и т. д. Жиры содержатся также в мышечной ткани, костном мозге, печени и других органах. В растениях жиры накапливаются в основном в плодовых телах и семенах. Особенно высокое содержание жиров свойственно так называемым масличным культурам. Например, в семенах подсолнечника жиры составляют до 50% и более (в пересчете на сухое вещество).

Биологическая роль жиров заключается прежде всего в том, что они входят в состав клеточных структур всех видов тканей и органов и необходимы для построения новых структур (так наз. пластическая функция). Важнейшее значение имеют жиры для процессов жизнедеятельности, т. к. вместе с углеводами они участвуют в энергообеспечении всех жизненных функций организма. Кроме того, жиры, накапливаясь в жировой ткани, окружающей внутренние органы, и в подкожной жировой клетчатке, обеспечивают механическую защиту и теплоизоляцию организма. Наконец, жиры, входящие в состав жировой ткани, служат резервуаром питательных веществ и принимают участие в процессах обмена веществ и энергии.

Природные жиры содержат более 60 видов различных жирных кислот, обладающих различными химическими и физическими свойствами и определяющих тем самым различия в свойствах самих жиров. Молекулы жирных кислот представляют собой "цепочки" из атомов углерода, связанных между собой и окруженных атомами водорода. Длина цепи определяет многие свойства, как самих жирных кислот, так и жиров, образуемых этими кислотами. Длинноцепочечные жирные кислоты имеют твердую консистенцию, короткоцепочечные являются жидкими веществами. Чем выше молекулярный вес жирных кислот, тем выше температура их плавления, а соответственно и температура плавления жиров, в состав которых входят эти кислоты. Вместе с тем, чем выше температура плавления жиров, тем они хуже усваиваются. Все легкоплавкие жиры усваиваются одинаково хорошо. По усвояемости жиры можно разделить на три группы:

    жир с температурой плавления ниже температуры тела человека, усвояемость 97-98% ;

    жир с температурой плавления выше 37°, усвояемость около 90%;

    жир с температурой плавления 50-60°, усвояемость около 70- 80%.

По химическим свойствам жирные кислоты делятся на насыщенные (все связи между углеродными атомами, образующими "остов" молекулы, насыщены, или заполнены, атомами водорода) и ненасыщенные (не все связи между атомами углерода заполнены атомами водорода). Насыщенные и ненасыщенные жирные кислоты отличаются не только по своим химическим и физическим свойствам, по и по биологической активности и "ценности" для организма.

Насыщенные жирные кислоты содержатся в жирах животного происхождения. Они обладают невысокой биологи­ческой активностью и могут оказывать отрицательное дей­ствие на жировой и холестериновый обмены.

Ненасыщенные жирные кислоты широко представлены во всех пищевых жирах, но больше всего их находится в расти­тельных маслах. Они содержат двойные ненасыщенные связи, что обусловливает их значительную биологическую актив­ность и способность к окислению. Самыми распространенными являются олеиновая, линолевая, линоленовая и арахидоновая жирные кислоты, среди которых наибольшей активностью об­ладает арахидоновая кислота.

Ненасыщенные жирные кислоты в организме не образуются и должны ежедневно вводиться с пищей в количестве 8- 10 г. Источниками олеиновой, линолевой и линоленовой жир­ных кислот являются растительные масла. Арахидоновая жир­ная кислота почти не содержится ни в одном продукте и может синтезироваться в организме из линолевой кислоты в присутствии витамина В 6 (пиридоксина).

Недостаток ненасыщенных жирных кислот приводит к за­держке роста, возникновению сухости и воспалению кожных покровов.

Ненасыщенные жирные кислоты входят в состав мембранной системы клеток, миелиновых оболочек и соедини­тельной ткани. Эти кислоты отличаются от истинных витаминов тем, что не обладают способностью усиливать обменные процессы, однако потребность организма в них значительно выше, чем в истинных витаминах.

Для обеспечения физиологической потребности организма в ненасыщенных жирных кислотах необходимо ежедневно в пи­щевой рацион вводить 15-20 г растительного масла.

Высокой биологической активностью жирных кислот обла­дают подсолнечное, соевое, кукурузное, льняное и хлопковое масла, в которых содержание ненасыщенных жирных кислот составляет 50-80 %.

Само распределение полиненасыщенных жирных кислот в организме свидетельствует об их важной роли в его жизнедеятельности: больше всего их содержится в печени, мозге, сердце, половых железах. При недостаточном поступлении с пищей содержание их уменьшается прежде всего в этих органах. Важная биологическая роль этих кислот подтверждается их высоким содержанием в эмбрионе человека и в организме новорожденных, а также в грудном молоке.

В тканях имеется значительный запас полиненасыщенных жирных кислот, позволяющий довольно долго осуществлять нормальные превращения в условиях недостаточного поступления жира с пищей.

Рыбий жир отличается самым высоким содержанием наиболее активной из полиненасыщенных жирных кислот - арахидоновой; не исключено, что эффективность рыбьего жира объясняется не только имеющимися в нем витаминами А и D, но и высоким содержанием этой столь необходимой организму, особенно в детском возрасте, кислоты.

Важнейшим биологическим свойством полиненасыщенных жирных к т является их участие в качестве обязательного компонента в образовании структурных элементов (клеточных мембран, миелиновой оболочки нервного волокна, соединительной ткани), а также в таких высокоактивных в биологическом отношении комплексах, как фосфатиды, липопротеиды (белково-липидные комплексы) и др.

Полиненасыщенные жирные кислоты обладают способностью повышать выведение холестерина из организма, переводя его в легкорастворимые соединения. Это свойство имеет большое значение в профилактике атеросклероза. Кроме того, полиненасыщенные жирные кислоты оказывают нормализующее действие на стенки кровеносных сосудов, повышая их эластичность и снижая проницаемость. Имеются данные, что недостаток этих кислот ведет к тромбозу коронарных сосудов, т. к. жиры, богатые насыщенными жирными кислотами, повышают свертываемость крови. Поэтому полиненасыщенные жирные кислоты могут рассматриваться как средства предупреждения ишемической болезни сердца.

По биологической ценности и содержанию полиненасыщенных жирных кислот жиры можно разделить на три группы.

К первой относят жиры, обладающие высокой биологической активностью, в которых содержание полиненасыщенных жирных кислот составляет 50-80%; 15- 20 г в сутки этих жиров могут удовлетворить потребность организма в таких кислотах. К этой группе принадлежат растительные масла (подсолнечное, соевое, кукурузное, конопляное, льняное, хлопковое).

Во вторую группу входят жиры средней биологической активности, которые содержат менее 50% полиненасыщенных жирных кислот. Для удовлетворения потребности организма в этих кислотах требуется уже 50-60 г таких жиров в сутки. К ним относятся свиное сало, гусиный и куриный жир.

Третью группу составляют жиры, содержащие минимальное количество полиненасыщенных жирных кислот, которое практически не в состоянии удовлетворить потребность организма в них. Это бараний и говяжий жир, сливочное масло и другие виды молочного жира.

Биологическую ценность жиров, кроме различных жирных кислот, определяют и входящие в их состав жироподобные вещества - фосфатиды, стерины, витамины и др.

Фосфатиды по своей структуре весьма близки к нейтральным жирам: чаще в пищевых продуктах содержится фосфатид лецитин, несколько реже - кефалин. Фосфатиды являются необходимой составной частью клеток и тканей, активно участвуя в их обмене, особенно в процессах, связанных с проницаемостью клеточных мембран. Особенно много фосфатидов в костном жире. Эти соединения, принимая участие в жировом обмене, влияют на интенсивность всасывания жира в кишечнике и использование их в тканях (липотропное действие фосфатидов). Фосфатиды синтезируются в организме, но непременным условием их образования являются полноценное питание и достаточное поступление белка с пищей. Источниками фосфатидов в питании человека являются многие продукты, особенно желток куриного яйца, печень, мозги, а также пищевые жиры, особенно нерафинированные растительные масла.

Стерины также обладают высокой биологической активностью и участвуют в нормализации жирового и холестеринового обмена. Фитостерины (растительные стерины) образуют с холестерином нерастворимые комплексы, которые не всасываются; тем самым предотвращается повышение содержания холестерина в крови. Особенно эффективны в этом отношении эргостерин, который под действием ультрафиолетовых лучей превращается в организме в витамин D, и стеостерин, способствующий нормализации содержания холестерина в крови. Источники стеринов - различные продукты животного происхождения (свиная и говяжья печень, яйца и т. д.). Растительные масла теряют большую часть стеринов при рафинировании.

Жиры относятся к основным пищевым веществам, поставляющим энергию для обеспечения процессов жизнедеятельности организма и "строительный материал" для построения тканевых структур.

Жиры обладают высокой калорийностью, она превосходит теплотворную способность белков и углеводов более чем в 2 раза. Потребность в жирах определяется возрастом человека, его конституцией, характером трудовой деятельности, состоянием здоровья, климатическими условиями и т. д. Физиологическая норма потребления жиров с пищей для людей среднего возраста составляет 100 г в сутки и зависит от интенсивности физической нагрузки. С возрастом рекомендуется сокращать количество жира, поступающего с пищей. Потребность в жирах может быть удовлетворена при употреблении различных жировых продуктов.

Среди жиров животного происхождения высокими пищевыми качествами и биологическими свойствами выделяется молочный жир, используемый преимущественно в виде сливочного масла. Этот вид жира содержит большое количество витаминов (A, D2, E) и фосфатидов. Высокая усвояемость (до 95%) и хорошие вкусовые качества делают сливочное масло продуктом, широко употребляемым людьми всех возрастов. К животным жирам относятся также свиное сало, говяжий, бараний, гусиный жир и др. Они содержат относительно немного холестерина, достаточное количество фосфатидов. Вместе с тем их усвояемость различна и зависит от температуры плавления. Тугоплавкие жиры с температурой плавления выше 37° (свиное сало, говяжий и бараний жир) усваиваются хуже, чем сливочное масло, гусиный и утиный жир, а также растительные масла (температура плавления ниже 37°). Жиры растительного происхождения богаты незаменимыми жирными кислотами, витамином Е, фосфатидами. Они легко усваиваются.

Биологическую ценность растительных жиров во многом определяют характер и степень их очистки (рафинации), которую проводят для удаления вредных примесей. В процессе очистки теряются стерины, фосфатиды в другие биологически активные вещества. К комбинированным (растительным и животным) жирам относятся различные виды маргаринов, кулинарные и др. Из комбинированных жиров наиболее распространены маргарины. Их усвояемость близка к усвояемости сливочного масла. Они содержат много витаминов A, D, фосфатидов и других биологически активных соединений, необходимых для нормальной жизнедеятельности.

Возникающие при хранении пищевых жиров изменения приводят к снижению их пищевой и вкусовой ценности. Поэтому при длительном хранении жиров их следует оберегать от действия света, кислорода воздуха, тепла и других факторов.

Таким образом, жиры в организме человека играют как важную энергетическую и пластическую роль. Кроме того, они являются хороши­ми растворителями ряда витаминов и источниками биологически активных веществ. Жир повышает вкусовые качества пищи и вызывает чувство длительного насыщения.